ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

Nguyen Duy Thanh, V.M. Khachumov Models and methods for matching images in the problem of face recognition

Abstract.

In the article the analysis of the subject area is given and the relevance of the problem of face recognition is proved. Image matching methods with the use of position lines, convolution and invariants under the group of affine transformations for 2D and 3D images are considered. Correct comparison is a necessary stage of the recognition problem solution. Examples of position lines method application for normalizing face images.

Keywords:

graphic image, invariant moments, affine transformation, image comparison, recognition.

PP. 5-14.

REFERENCES

1. Khachumov M.V., Nguyen D.T. 2015. Face recognition in photos based on the method of invariant moments. Modern problems of science and education (2). Available at: http://www.science-education.ru/pdf/2015/2-2/855.pdf (accessed October 10, 2016).
2. Nguyen D.T. 2016. Invarianty v zadachah raspoznavanija graficheskih obrazov [Invariants in problems of recognition of graphic images]. Vestnik Rossiyskogo universiteta druzhby narodov. Serija: Matematika, Informatika, Fizika [Bulletin of the Peoples' Friendship University of Russia. Series: Mathematics, Informatics, Physics] 1:76-85.
3. Alibekov, A.G., Lagieva M.M., Khachumov V.M. 1995. Opredelenie orientacii trehmernyh graficheskih objektov [Determination of orientation of the three-dimensional graphical objects]. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 38(4):35-37.
4. Trushkov, V. V., Khachumov V. M. 2008. Opredelenie orientacii objektov v trehmernom prostranstve [Definition of orientation of objects in three-dimensional space]. Avtometrija [Optoelectronics, Instrumentation and Data Processing] 3:75-79.
5. Nedev M.D., Talalaev A.A., Tishchenko I.P., Khachumov V.M. 2009. Zadachi raspoznavaniya, geograficheskoy privyazki i nablyudeniya objektov na osnove analiza polutonovyh snimkov [Problems of recognition, geographical binding and observation of objects on the basis of the analysis of gray-scale pictures]. Aviakosmicheskoe priborostroenie [Aerospace Instrument-Making] 12:19-24.
6. Lagieva M.M., Khachumov V.M., Shabalov D.V. 1991. Metod postroeniya liniy polozheniya dlya identifikacii polutonovyh izobrazheniy [Method of creation of position lines for identification of grayscale images]. Avtometrija [Optoelectronics, Instrumentation and Data Processing] 6:7-12.
7. Nguyen D.T. 2016. Analiz invariantnyh momentov v zadachah masshtabirovaniya i vrashcheniya izobrazheniy [Analysis of invariant moments in problems of scaling and rotation of images]. Tezisy dokladov Vserossiyskoy konferencii (s mezhdunarodnym uchastiem) «Informacionno-telekommunikacionnye tekhnologii matematicheskoe modelirovanie vysokotekhnologichnyh sistem» [Abstracts of all-Russian conference (with international participation), "Information and telecommunication technologies and mathematical simulation of hi-tech systems"]. Moscow. 156-159.
8. Otkrytyy konkurs na luchshiy demonstracionnyy obrazec tekhnologii raspoznavaniya lic lyudey [Open competition for the best demonstration of face recognition technology]. Available at: http://fpi.gov.ru/activities/ideas/face (accessed October 10, 2016).
9. Programmisty iz Rossii povtorili uspekh kolleg v pervenstve na raspoznavanie lic [Programmers from Russia repeated the success of colleagues in face recognition championship]. Available at: https://lenta.ru/news/2016/09/06/ntechlab1/ (accessed October 10, 2016).
10. Naser Zaeri and Faris Baker. Thermal Face Recogni tion Using Moments Invariants // International Journal of Signal Processing Systems, Vol. 3, No. 2, December 2015, pp. 94-99.
11. Akihiro Hayasaka, Takuma Shibahara, Koichi Ito, Takafumi Aoki, Hiroshi Nakajima and Koji Kobayashi. A 3D Face Recognition System Using Passive Stereo Vision and Its Performance Evaluation // Intelligent Signal Processing and Communications, 2006. ISPACS '06. International Symposium on Intelligent Signal Processing and Communications, pp.379-382.
12. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Expression-Invariant 3D Face Recognition // J. Kittler and M.S. Nixon (Eds.): AVBPA 2003, LNCS 2688, pp.62-70.
13. Manolov A.I., Sokolov A.YU., Stepanenko O.V., Tumachek A.C., Tyaht A.V., Ciskaridze A.K., Zavarikin D.N., Kadeyshvili A.A. 2009. Nekooperativnaya biometricheskaya identifikaciya po 3D-modelyam lica s ispol'zovaniem videokamer vysokogo razresheniya [Non-cooperative biometric identification using 3D-face model and high-resolution cameras]. Available at: http://www.graphicon.ru/html/2009/conference/se8/139/139_Paper.pdf (accessed October 10, 2016).
14. Gilles Burel, Hugues Henocq. 3D invariants and their application to object recognition // Signal Processing, Vol. 45, No. 1, July 1995, pp.1-22.
15. Nita M. Thakare, V.M. Thakare. A Supervised Hybrid Methodology for Pose and Illumination Invariant 3D Face Recognition. – International Journal of Computer Applications (0975 – 8887) Volume 47, № 25, June 2012.
16. Dong Xu, Hua Li. Geometric moment invariants // Pattern Recognition 41 (2008), pp.240-249.
17. Homogeneous invariants. URL: http://zoi.utia.cas.cz/files/rot3dinvs8web.pdf (accessed October 10, 2016).
18. Ingolf Sommer, Oliver Mu?ller, Francisco S. Domingues, Oliver Sander, Joachim Weickert and Thomas Lengauer. Moment invariants as shape recognition technique for comparing protein binding sites // Bioinformatics, Vol. 23 no. 23 2007, pp.3139-3146.
19. Bessmelcev V.P., Bulushev E.D. 2014. Bystryy algoritm sovmeshcheniya izobrazheniy dlya kontrolya kachestva lazernoy mikroobrabotki [Fast image matching algorithm for quality control of laser micromachining]. Komp'yuternaya optika [Computer Optics]. 2:343-350.
20. Volegov D.B., Yurin D.V. 2008. Predvaritel'noe gruboe sovmeshchenie izobrazheniy po naydennym na nih pryamym liniyam dlya postroeniya mozaik, sverhrazresheniya i vosstanovleniya trekhmernyh scen [Preliminary rough images mapping using straight lines for building mosaics, superresolution and reconstructing three-dimensional scenes]. Programmirovanie [Programming] 5:47-66.
21. Suk T., Flusser J. 3D rotation invariants // Department of Image, 2012. URL: http://zoi.utia.cas.cz/3DRotationInvariants (accessed October 10, 2016).
22. Khachumov V.M., Fralenko V.P. 2012. Vysokoproizvoditel'naya obrabotka izobrazheniy na klasternyh ustroystvah [High-performance image processing on cluster devices]. Neyrokomp'yutery: razrabotka, primenenie [Neurocomputers: development and application] 6:38-46.
23. Khachumov V.M. 2004. Graficheskie obrazy i neyronnye seti [Graphic images and neural networks]. Tezisy dokladov 4-ya mezhdunarodnoy konferencii «Sistemy proektirovaniya, tekhnologicheskoy podgotovki proizvodstva i upravleniya ehtapami zhiznennogo cikla promyshlennogo produkta СAD/СAM/PDM–2004 [Abstracts of the 4th international conference "Systems of design, technological preparation of production and management stages of the life cycle of industrial product CAD/CAM/PDM–2004]. Мoscow.