ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

N.V. Chudova, A.I. Panov Causal inference in psychological data in the case of aggression

Abstract.

We carried out empirical study of aggression with different personal features. In article we present results obtained for different forms of aggression including results of machine learning experiments with AQJSM method. The method distinguishes several classes with different levels of aggression defined with the special form and makes causal inferences with AQ preprocessing and first stage of JSM method of extraction of causal-effect relations. Proposed method gives acceptable results for both small datasets and big data with incomplete information.

Keywords:

psychodiagnostics study, aggression, machine learning, causal inference, JSM method, AQ rules.

PP. 38-46.

REFERENCES

1. Baranskaya L. T. Razvitie spetsificheskogo lichnostnogo sindroma u patsientov ehsteticheskoj khirurgii / L. T. Baranskaya // Izvestiya Ural'skogo gosudarstvennogo universiteta. Ser. 1, Problemy obrazovaniya, nauki i kul'tury. — 2008. — N 60, vyp. 24. — S. 26-34
2. Enikolopov S. N., TSibul'skij N. P. Psikhometricheskij analiz russkoyazychnoj versii Oprosnika diagnostiki agressii А.Bassa i M.Perri//Psikhologicheskij zhurnal. 2007. № 1. s. 115—124
3. Maslou А. Motivatsiya i lichnost'. 3-e izd. Per. s angl. — SPb.: Piter, 2008. — 352 s.
4. Osipov G. S. Priobretenie znanij intellektual'nymi sistemami: osnovy teorii i tekhnologii. — M. : Fizmatlit, 1997.
5. Panov A.I., Shvets A.V., Volkova G.D. Metod izvlecheniya prichinno-sledstvennykh svyazey s ispolzovaniem optimizirovannykh baz faktov // Iskusstvennyy intellekt i prinyatie resheniy. —2015. — № 1. — S. 27–34.
6. Panov A.I. Vyyavlenie prichinno-sledstvennykh svyazey v dannykh psikhologicheskogo testirovaniya logicheskimi metodami // Iskusstvennyy intellekt i prinyatie resheniy. — 2013. — № 1. — C. 24–32.
7. Psikhologicheskaya diagnostika. Pod red. Аkimovoj M.K. SPb.: Piter, 2005 - 304 s.
8. Fromm EH. Begstvo ot svobody. Per. s angl. А. Laktionova. — M.: АST, 2009.
9. Michalski R.S. AQVAL/1 - Computer Implementation of a Variable-Valued Logic System VL1 and Examples of its Application to Pattern Recognition // Proceeding of the First International Joint Conference on Artificial Intelligence (IJCAI’73). 1973. P. 3–17.
10. Wojtusiak J. Rule Learning in Healthcare and Health Services Research // Machine Learning in Healthcare Informatics / ed. Dua S., Acharya U.R., Dua P. 2014. P. 131–145.
11. Finn V.K. Distributivnye reshyotki induktivnykh protsedur // Nauchno-tekhnicheskaya informatsiya. — 2014. — № 11. — S. 1-31.
12. Finn V.K. Ob opredelenii ehmpiricheskikh zakonomernostej posredstvom DSM-metoda avtomaticheskogo porozhdeniya gipotez // Iskusstvennyj intellekt i prinyatie reshenij. — 2010. — № 4. — S. 41–48.
13. Norris E. M. Maximal rectangular relations // Fundamentals of Computation Theory / Ed. by Marek Karpinski. — Springer Berlin Heidelberg, 1977. — P. 476–481.
14. Kuznetsov S. O., Obiedkov S. A. Comparing performance of algorithms for generating concept lattices // Journal of Experimental and Theoretical Artificial Intelligence. — 2002. — Vol. 14. — P. 189–216.