ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

A.O. Shelmanov, M.A. Kamenskaya, М.I. Ananyeva, I.V. Smirnov Semantic-syntactic analysis for question answering and definition extraction

Abstract.

We research the contribution of semantic-syntactic analysis to the effectiveness of solving applied text processing tasks: question-answering and definition extraction from scientific publications. The paper presents methods for solving these tasks that in addition to morphological and syntactic structure use also semantic structure of texts. We conducted the experimental evaluation of these methods and experimental comparison of two approaches to syntactic and semantic analysis: separate parsing and join semantic-syntactic parsing.

Keywords:

semantic parsing, joint semantic-syntactic parsing, question-answering, information extraction, definition extraction.

PP. 47-61.

REFERENCES

1. Osipov G.S., I.V. Smirnov, I.A. Tikhomirov. 2008. Relyatsionno-situatsionnyy metod poiska i analiza tekstov i yego prilozheniya [Relational-situational method of search and text analysis and its applications]. Iskusstvennyy intellekt i prinyatiye resheniy [Artificial intelligence and decision-making] 2:3–10.
2. Tikhomirov I.A., I.V. Smirnov, I.V. Sochenkov et al. 2012. Exactus Expert: Poiskovo-analiticheskaya sistema podderzhki nauchno-tekhnicheskoy deyatel'nosti [Exactus Expert: Search and analysis system for scientific and technological activities]. Trudy trinadtsatoy natsional'noy konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiyem KII-2012 [13th conference (International) of Artificial Intelligence (CAI-2012) Proceedings] Belgorod. 4:100–108.
3. Osipov G. Methods for extracting semantic types of natural language statements from texts // 10th IEEE International Symposium on Intelligent Control. — Monterey, California, USA, 1995.
4. Zolotova G.A., N.K. Onipenko, M.J. Sidorova. 2004. Kommunikativnaya grammatika russkogo yazyka [Communicative Grammar of the Russian Languag]. Institut russkogo yazyka RAN im. V. V. Vinogradova [Vinogradov Institute of the Russian Language RAS].
5. Gildea D., Jurafsky D. Automatic labeling of semantic roles // Computational Linguistics. — 2002. — Vol. 28, no. 3. — P. 245–288.
6. Testelets Y.G. 2001. Vvedeniye v obshchiy sintaksis [Introduction to the general syntax]. RSHU.
7. Smirnov I.V., A.O. Shelmanov, E.S. Kuznetsova, I.V. Khramoin. 2013. Semantiko-sintaksicheskiy analiz yestestvennykh yazykov Chast' II. Metod semantiko-sintaksicheskogo analiza tekstov [The semantic and syntactic analysis of natural languages Part II. The method of semantic and syntactic analysis of texts]. Iskusstvennyy intellekt i prinyatiye resheniy [Artificial intelligence and decision-making]. 1:11-24
8. Shelmanov A. O., Smirnov I. V. Methods for semantic role labeling of Russian texts // Computational Lin-guistics and Intellectual Technologies. Papers from the Annual International Conference "Dialogue 2014". — No. 13. — 2014. — P. 607–620.
9. Osipov G.S., A.O. Shelmanov. 2015. Metod povysheniya kachestva sintaksicheskogo analiza na osnove vzaimodeystviya sintaksicheskikh i semanticheskikh pravil [Method for improving the quality of parsing on the base of interaction of syntactic and semantic rules]. Trudy shestoy mezhdunarodnoy konferentsii "Sistemnyy analiz i informatsionnyye tekhnologii" [6th International Conference "System Analysis and Information Technologies" Proceedings]. 1:229–240.
10. Semantic analysis and question answering: a system under development / Igor Boguslavsky, Vyaches-lav Dikonov, Leonid Iomdin et al. // Computational Linguistics and Intellectual Technologies. Papers from the Annual International Conference "Dialogue 2015". — 2015. — P. 62–79.
11. Yao X., Van Durme B. Information extraction over structured data: Question answering with Freebase // Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. — Association for Computational Linguistics, 2014. — P. 956–966.
12. Voorhees E. M. et al. The TREC-8 question answering track report // TREC. — Vol. 99. — 1999. — P. 77–82.
13. Building Watson: An overview of the DeepQA project / David Ferrucci, Eric Brown, Jennifer Chu-Carroll et al. // AI magazine. — 2010. — Vol. 31, no. 3. — P. 59–79.
14. ILQUA–an IE-driven question answering system / Min Wu, Michelle Duan, Samira Shaikh et al. // TREC. — 2005.
15. Shen D., Klakow D. Exploring correlation of dependency relation paths for answer extraction // Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics / Association for Computational Linguistics. — 2006. — P. 889–896.
16. Matching sets of parse trees for answering multi-sentence questions / Boris Galitsky, Dmitry Ilvovsky, Ser-gey Kuznetsov, Fedor Strok // Proceedings of Recent Advances in Natural Language Processing (RANLP 2013). — 2013. — P. 285–293.
17. Ogarok A. 2006. Stokona na ROMIP-2006 [“Stokona” at ROMIP-2006]. Trudy ROMIP-2006 [Seminar “Romip-2006” Proceedings]. 86–91.
18. Nekrestianov I. and M. Nekrestianova. 2006. ROMIP-2006: otchet organizatorov [ROMIP-2006: organizers’ report]. Trudy ROMIP-2006 [Seminar “Romip-2006” Proceedings]. 7-29.
19. Shen D., Lapata M. Using semantic roles to improve question answering. // EMNLP-CoNLL. — 2007. — P. 12–21.
20. Pizzato L. A., Molla D. Indexing on semantic roles for question answering // Coling 2008: Proceedings of the 2nd workshop on Information Retrieval for Question Answering / Association for Computational Linguistics. — 2008. — P. 74–81.
21. Combining semantic information in question answering systems / Paloma Moreda, Hector Llorens, Este-la Saquete, Manuel Palomar // Information Processing & Management. — 2011. — Vol. 47, no. 6. — P. 870–885.
22. Vasilyeva N.E. 2004. Shablony upotrebleniy terminov i ikh ispol'zovaniye pri avtomaticheskoy obrabotke nauchno-tekhnicheskikh tekstov [Templates of term use and their application in automated processing of scientific and technical texts]. Trudy mezhdunarodnoy konferentsii "Dialog 2004" [International Conference "Dialogue 2004" Proceedings]. 96–101.
23. Bolshakova E.I. and A.A. Noskov. 2010. Programmnyye sredstva analiza tekstov na osnove leksiko-sintaksicheskikh shablonov yazyka LSPL [Software for text analysis on the base of lexical and syntactic patterns of LSPL-language]. Programmnyye sistemy i instrumenty: Tematicheskiy sbornik [Software systems and tools: Thematic collection]. 11: 61–73.
24. Efremova N.E., E.I. Bolshakova, A.A. Noskov, V.J. Antonov. 2010. Terminologicheskiy analiz teksta na osnove leksiko-sintaksicheskikh shablonov [Terminological text analysis on the base of lexical and syntactic patterns]. Trudy mezhdunarodnoy konferentsii "Dialog 2010" [International Conference "Dialogue 2010" Proceedings]. RSHU. 124-129.
25. Bolshakova E.I. 2014. Yazyk leksiko-sintaksicheskikh shablonov LSPL: opyt ispol'zovaniya i puti razvitiya [Lexical and syntactic patterns of LSPL-language: experience and future]. Programmnyye sistemy i instrumenty: Tematicheskiy sbornik [Software systems and tools: Thematic collection]. 15: 15–26.
26. MaltParser: A language-independent system for data-driven dependency parsing / Joakim Nivre, Jo-han Hall, Jens Nilsson et al. // Natural Language Engineering. — 2007. — Vol. 13, no. 2. — P. 95–135.
27. Learning to rank for robust question answering / Arvind Agarwal, Hema Raghavan, Karthik Subbian et al. // Proceedings of the 21st ACM international conference on Information and knowledge management. — 2012. — P. 833–842.
28. Dang H. T., Kelly D., Lin J. J. Overview of the TREC 2007 question answering track // Proceedings of The Sixteenth Text REtrieval Conference, TREC 2007. — 2007.