ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

A.I. Panov, K.S. Yakovlev On interaction of strategic and tactical planning for the coalition of agents in dynamic environment


Planning problems are studied in the article in the context of a global task of development of the intelligent control system for complex technical objects (mobile robots, unmanned vehicles etc.). We concentrate on the class of tasks that can not be solved without an interaction between strategic (symbolic) and tactical (sub-symbolic) planning. Original behavior and path planning methods are proposed as well as their relations and interfaces. A model example of a coalition relocation task in a dynamic environment with the destroyable obstacles is considered.


intelligent planning, automated planning, behavior planning, path planning, sign world model, image, significance, personal meaning, heuristic search, A*, JPS.

PP. 68-78.


1. Zubarev D.V. i dr. Printsipy postroeniya mnogourovnevykh arkhitektur sistem upravleniya bespilotnymi letatel'nymi apparatami // Аviakosmicheskoe priborostroenie. 2013. № 4. S. 10–28.
2. Emel’yanov S. et al. Multilayer cognitive architecture for UAV control // Cogn. Syst. Res. 2016. Vol. 39. P. 58–72.
3. S. D. Hanford, “A cognitive robotic system based on the SOAR cognitive architecture for mobile robot navigation, search and mapping mission,” The Pennsylvania State University, 2011.
4. G. J. Trafton, L. M. Hiatt, A. M. Harrison, F. P. Tamborello, S. S. Khemlani, and A. C. Schultz, “ACT-R/E: An embodied cognitive architecture for Human-Robot Interaction,” J. Human-Robot Interact., vol. 2, no. 1, pp. 30–54, 2013.
5. Hoffmann J. Everything you always wanted to know about planning (but were afraid to ask) // KI 2011: Advances in Artificial Intelligence / ed. Bach J., Edelkamp S. Springer Berlin Heidelberg, 2011. P. 1–13.
6. CHuvgunova O.А. Planirovanie kak predmet psikhologicheskogo issledovaniya // Psikhologicheskie issledovaniya. 2015. T. 8, № 43. S. 11.
7. R. Sun and S. Helie, “Psychologically realistic cognitive agents: taking human cognition seriously,” J. Exp. Theor. Artif. Intell., vol. 25, no. 1, pp. 65–92, 2012.
8. Osipov G.S., Panov A.I., Chudova N. V. Behavior control as a function of consciousness. I. World model and goal setting // J. Comput. Syst. Sci. Int. 2014. Vol. 53, № 4. P. 517–529.
9. Vygotsky L.S. Thought and Language. MIT Press, 1986. 344 p.
10. Leontyev A.N. The Development of Mind. Kettering: Erythros Press and Media, 2009. 428 p.
11. Panov A.I., Yakovlev K. Behavior and Path Planning for the Coalition of Cognitive Robots in Smart Relocation Tasks // Robot Intelligence Technology and Applications 4 / ed. Kim J.-H. et al. Springer International Publishing, 2016. P. 3–20.
12. Osipov G.S., Panov A.I., Chudova N. V. Behavior Control as a Function of Consciousness. II. Synthesis of a Behavior Plan // J. Comput. Syst. Sci. Int. 2015. Vol. 54, № 6. P. 882–896.
13. Herskovits A. Language, Spatial Cognition, and Vision // Spatial and Temporal Reasoning / Ed. by O. Stock. — Springer, 1997. — Pp. 155–202.
14. Kuipers B. Spatial semantic hierarchy // Artificial Intelligence. — 2000. — Vol. 119, no. 1. — Pp. 191–233.
15. Osipov G.S. Dynamics in Integrated Knowledge-based Systems // Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference. Gaithersburg: IEEE, 1998. Vol. 2. P. 199–203.
16. Panov А.I. Predstavlenie znanij avtonomnykh agentov, planiruyushhikh soglasovannye peremeshheniya // Robototekhnika i tekhnicheskaya kibernetika. 2015. № 4(9). S. 34–40.
17. Panov А. I. Аlgebraicheskie svojstva operatorov raspoznavaniya v modelyakh zritel'nogo vospriyatiya // Mashinnoe obuchenie i analiz dannykh. 2014. T. 1. № 7. S. 863–874.
18. Yap P. Grid-based path-finding //Advances in Artificial Intelligence. – Springer Berlin Heidelberg, 2002. – С. 44-55.
19. Yakovlev K.S, Baskin E.S. Graph Models For Path Planning // Artificial Intelligence and Decision Making, 1, 2013. C.5-12.
20. Harabor, D., and Grastien, A. 2011. Online graph pruning for pathfinding on grid maps. In AAAI-11.
21. Hart P. E., Nilsson N. J., Raphael B. A formal basis for the heuristic determination of minimum cost paths //Systems Science and Cybernetics, IEEE Transactions on. – 1968. – Т. 4. – №. 2. – С. 100-107.
22. Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner. Theta*: Any-Angle Path Planning on Grids. In Proceedings of the National Conference on Artificial Intelligence (Vol. 22, No. 2, p. 1177), 2007. Menlo Park, Calif.: AAAI Press.
23. Yakovlev, K., Baskin, E., & Hramoin, I. (2015). Grid-based angle-constrained path planning. In Proceedings of The 38th Annual German Conference on Artificial Intelligence (KI’2015). pp. 208-221. Springer International Publishing.