ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

V.E. Pavlovsky Heuristic algorithm of isolated obstacles detection by mobile robot according to ranging data


The algorithm solving a problem of detection of the single isolated obstacles by mobile robot by means of a range finder is described. The main unit of algorithm is constructed as system of productional rules which are introduced by the logical ratios allowing to find existence or lack of an obstacle across the field of normals to a surface. The found obstacles are brought on the two-dimensional map, methods of mapping of obstacles are discussed. The paper is prepared as expanded version of the report submitted on the Conference on Artificial Intelligence CAI-2016, Smolensk, 2016.


mobile robot, range finder, productional system

PP. 93-105.


1. Lidary, osobennosti konstrukcii [Lidars, features of a design]
Available at: (accessed November 5, 2016).
2. Sravnenie harakteristic lasernyh scanerov SICK LMS 200 i Hokuyo URG-04(-UG01) [Comparing of characteristics of the laser SICK LMS 200 and Hokuyo URG-04(-UG01) scanners]. Available at: (accessed November 5, 2016).
3. D.S.Lemtyuzhnikov. Elementarny kurs optiki I dalnomerov. [Elementary course of optics and range finders ]. M.: Izd-vo Voenizdat, 1938, p.136.
4. O.N.Lysenko. 2008. Ispolzovanie lazernyh skanerov SICK AG dlya navigacii mobilnyh robotov. [Use of the laser SICK AG scanners for navigation of mobile robots] Komponenty i tehnologii [Components and technologies] №1, 2008, p.56-59/
5. Mobile Robotic Using Sick Laser Range Finder.
Available at: (accessed November 5, 2016).
6. Karty rabochei zony dlya mobilnogo robota [Maps of a working zone for the mobile robot] Available at: (accessed November 5, 2016).
7. Dickmanns, E D., Zapp, A. Autonomous High Speed Road Vehicle Guidance By Computer Vision. // Proc. of International Federation of Automatic Control. World Congress (10th), 1988, pp.221-226. (
8. Bespilotny KamAZ sovershil pervuyu poezdku. [Unmanned KAMAZ has made the first trip] Available at: (accessed November 5, 2016).
9. Tartan Racing. Available at: (accessed November 5, 2016).
10. V.E.Pavlovsky, V.N.Ogoltsov, N.S.Ogoltsov. 2014. Microcomputernaya sistema upravleniya nizhnego urovnya dlya avtomobilya s mehanicheskoi transmissiei. [Microcomputer control system of the lower level for the car with mechanical transmission] Mehatronika. Avtomatizaciya. Upravlenie. [Mechatronics. Automation. Control]. №6, 2014. p. 29-36.
11. V.E.Pavlovsky, V.N.Ogoltsov, I.A.Spiridonova, E.V.Pavovsky. 2015. Zadachi upravleniya bespilotnym avtomobilem, experimentalnaya realizaciya v proekte '"AvtoNIVA" [Problems of control of the self-driving car, experimental realization in the AvtoNIVA project.] Robototehnika i tehnicheskaya kibernetika [Robotics and technical cybernetics]. Izd-vo SPb, CNII RTK, №4 (9), 2015. p.41-46.
12. V.E.Pavlovsky, V.N.Ogoltsov, I.A.Spiridonova. 2015. Zadachi upravleniya bespilotnym avtomobilem v proekte '"AvtoNIVA" [Problems of control of the self-driving car in the AvtoNIVA project] Trudy Mezdunarodnoi nauchno-technicheskoi konferencii "Extremalnaya robototehnika" / Trudy II Vserossiiskogo seminara "Bespilotnye transportnye sredstva s elemenami iskusstvennogo intellekta" [International scientific and technical conference "Extreme Robotics", Proceedings / The All-Russian seminar "Unmanned vehicles with elements of artificial intelligence", Proceedings], S.-Peterburg, 107-114.
13. Al-Sultan, K.S. & Aliyu, M.D.S. A new potential field-based algorithm for path planning. // Journal of Intelligent and Robotic Systems (1996) November 1996, Volume 17, Issue 3, pp 265–282. DOI:10.1007/BF00339664
14. Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. // IEEE Transactions on Systems Science and Cybernetics SSC4. 4 (2): 100–107. DOI:10.1109/TSSC.1968.300136