ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

D.V. Vinogradov VKF-method of intelligent data analysis: current state of the art and open problems

Abstract.

The paper describes current state of the art for VKF-method of intelligent data analysis. This method combines three cognitive procedures (induction, abduction, and analogy) based on probabilistic algorithm for similarity calculation. We demonstrate main results and formulate open problems to investigate them.

Keywords:

similarity, Markov chain, VKF-candidate, counter-example, prediction by analogy.

PP. 9-16

REFERENCES

1. Anshakov, O.M., Skvortsov, D.P., Finn, V.K. Logicheskie sredstva expertnyh system tipa JSM // Semiotica i informatika. – Issue 28. – 1986. – p. 65–102.
2. Anshakov, O.M., Skvortsov, D.P., Finn, V.K. O deduktivnoj imitacii nekotoryh variantov JSM-metoda avtomaticheskogo porozhdenija gipotez // Semiotica i informatica. - Issue 33. – 1993. – p. 164–233.
3. Vapnik, V.N., Chervonenkis, A.Y. Teorija raspoznavania obrazov. – М.: Nauka. – 1974. – 416 pp.
4. Vinogradov, D.V. Formalizing plausible arguments in predicate logic // Autom. Doc. Math. Linguist Vol. 34 – 2000. – № 6. – p. 6–10.
5. Vinogradov, D.V. Random generation of hypotheses in the JSM method using simple Markov chains // Autom. Doc. Math. Linguist Vol. 46 – 2012. – № 5. – p. 221–228.
6. Vinogradov, D.V. The probability of encountering an accidental DSM similarity in the presence of counter examples // Autom. Doc. Math. Linguist Vol. 49 – 2015. – № 2. – p. 43–46.
7. Gusakova, S.M., Finn, V.K. Skhodstvo i pravdopodobnyj vyvod // Izvestija AN SSSR, Ser. «Tehnicheskaja kibernetika». – 1987. – № 5. – p. 42–63.
8. JSM-metod avtomaticheskogo porozhdenija hypotez: Logigeskie i epistemologicheskie osnovanija. (Eds.: Finn, V.K., Anshakov, O.M.) – М.: URSS, 2009. – 432 pp.
9. Kuznetsov, S.O. Interpretacija na grafah i slozhnostnye harakteristiki zadach poiska zakonomernostej opredelennogo tipa // Nauchnaja i tehnicheskaja informacija, Ser. 2. – 1989. – № 1. – p. 23–28.
10. Kuznetsov, S.O. Bystryj algoritm postroenija vseh peresechenij objektov iz nizhnej polureshetki // Nauchnaja i tehnicheskaja informacija, Ser. 2. – 1993. – № 1. – p. 17–20.
11. Mill, J.S. A System of Logic, Ratiocinative and Inductive – Honolulu, 2002. – 644 pp.
12. Peirce, C.S. Reasoning and the Logic of Things – Boston: Harvard University Press, 1993. – 312 pp.
13. Skvortsov, D.P. O nekotoryh sposobah postroenija logicheskih jazykov s kvantorami po kortezham // Semiotica i informatica. – Issue 20. – 1983. – p. 102–126.
14. Feller, W. An Introduction to Probability Theory and Its Applications. Vol. 1, 3rd Ed. – NY: Wiley, 2008. – 510 pp.
15. Finn, V.K. Bazy dannyh s nepolnoj informaciej i novyj metod avtomaticheskogo porozhdenija hypotez // In: Dialogovye i faktograficheskie sistemy informacionnogo obespechenija. – М., 1981. – p. 153–156.
16. Finn, V.K. The synthesis of cognitive procedures and the problem of induction // Autom. Doc. Math. Linguist Vol. 43 – 2009. – № 3. – p. 149–195.
17. Finn, V.K. Ob intellektualnom analize dannyh // Novosti iskusstvennogo intellekta. – 2004. – № 3. – p. 3–18.
18. Diaconis, Persi, Group representations in probability and statistics. IMS Lecture Notes – Monograph Series Vol. 11. – Hayward (CA): Institute of Mathematical Statistics, 1988. – 198 pp.
19. Finn, V.K., Mikheyenkova, M.A. Plausible Reasoning for the Problems of Cognitive Sociology // Logic and Logical Philosophy, Vol. 20. – 2011. – p. 111-137.
20. Ganter, Bernard and Wille, Rudolf, Formal Concept Analysis. Transl. from German. – Berlin: Springer–Verlag, 1999. – 284 pp.