ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V.B. Melekhin, V.M. Khachumov Dynamic model of knowledge representation in intelligent control systems of complex technological processes

Abstract.

The original model of the dynamic knowledge presentation in intelligent control systems of complex technological processes and forecasting of abnormal situations in the form of fuzzy marked growing semantic network is designed. The proposed model allows to adequately describe the complex multivariable dynamic technological processes and on this basis to control them in the process of theimplementation by comparing the actual and reference dynamic behavioral models of the control object in time. The rules of the comparison of different fuzzy growing semantic networks are developed, which allow to realize automatic control of the complex technological processes in an unstable environment.

Keywords:

intelligent control system, dynamic technological process, abnormal situation, fuzzy semantic
network.

PP. 31-43.

REFERENCES

1. Agronik, A.Yu., A.A. Talalaev, V.P. Fralenko, V.M. Khachumov and O.G. Shishkin. 2016. Analiz sistem proektirovaniya tekhnologicheskih cepochek i processov [Analysis of systems for technological chains and processes designing]. Ontologiya proektirovaniya [Ontology of Designing] 3:255–269.
2. Latyshev, A.V., V.A. Romakin, V.M. Khachumov and M.V. Khachumov. 2016. Metody i modeli avtomaticheskogo sinteza tekhnologicheskih processov, osnovannogo na znaniyah [Methods and models of automatic knowledge-based synthesis of technological processes]. Programmnye sistemy: teoriya i prilozheniya [Program systems: theory and applications] 3(30):25–43.
3. Khachumov, M.V. 2016. Metod analiza i sravneniya ierarhicheskih tekhnologicheskih processov v zadachah personificirovannogo lecheniya pacientov [The method of analysis and comparison of hierarchical processes in the task of personalized treatment of patients]. Sovremennye naukoemkie tekhnologii [Modern high technologies] 9:457–462.
4. Rassel, S., P. Norvig. 2005. Iskusstvennyj intellekt: sovremennyj podhod (AIMA) [Artificial intelligence: modern approach (AIMA)]. Moscow: Williams. 1424 p.
5. Maksimov, V.I., E.K. Kornoushenko. 1999. Analiticheskie osnovy primeneniya kognitivnogo podhoda k resheniyu slabostrukturirovannyh zadach [The analytical basis of the cognitive approach for the solution of semi-structured problems]. Trudy IPU RAN. Tom 2 [Works ICS RAS. Vol. 2]. Moscow: ICS RAS. 95–109.
6. Emeliyanova, Yu.G. 2016. Razrabotka metodov kognitivnogo otobrazheniya sostoyanij dinamicheskih sistem real'nogo vremeni [Development of cognitive representation methods for real time dynamic systems]. Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision-making] 3:21–30.
7. Abramova, N.A., A.A. Fedotov. 2009. O razvitii analiticheskogo podhoda k opredeleniyu vneshnego povedeniya modelej na osnove dinamicheskih kognitivnyh kart [On the development of the analytical approach to determination of external behavior of models based on dynamic cognitive maps]. Trudy IX Mezhdunarodnoj konferencii “Kognitivnyj analiz i upravlenie razvitiem situacij” [Proceedings of IX International conference “Cognitive analysis and situations control”]. Mоscow: ICS RAS. 23–40.
8. Bershteyn, L.S., V.B. Melekhin. 2000. Nechetkie dinamicheskie semanticheskie seti dlya predstavleniya znanij intellektual'nyh sistem [Fuzzy dynamic semantic networks for representation of knowledge in intelligent systems]. Avtomatika i telemekhanika [Automation and remote control] 3:107–110.
9. Zykov, A.A. 1974. Gipergrafy [The Hypergraphs]. Uspekhi matematicheskoj nauki [Achievements of mathematical science] 6(180):89–154.
10. Zade, L. 1976. Logiko-lingvisticheskaya peremennaya i ee primenenie dlya prinyatiya priblizhennyh reshenij [Logicallinguistic variable and its application for acceptance of approximate solutions]. Moscow: World. 168 p.
11. Bershteyn, L.S., V.B. Melekhin. 1988. Struktura procedurnogo predstavleniya znanij integral'nogo robota. 1. Rasplyvchatye semanticheskie seti [The structure of a procedural knowledge representation of the integral robot. 1. Fuzzy semantic network]. Izvestiya AN SSSR. Tekhnicheskaya kibernetika [News of Academy of Sciences of the USSR. Technical Cybernetics] 6:119–124.
12. Melihov, A.N., L.S. Bershteyn and S.Ya. Korovin. 1990. Situacionnye sovetuyushchie sistemy s nechetkoj logikoj [Situational advising systems with fuzzy logic]. Moscow: Science. 272 p.
13. Bershteyn, L.S, V.B. Melekhin. 1997. Opredelenie analogii mezhdu situaciyami problemnoj sredy dlya perenosa nakoplennogo opyta povedeniya [The definition of analogy between situations of the problem environment for transfer of the accumulated experience of behavior]. Izvestiya RAN. Teoriya i sistemy upravleniya [News of the Russian Academy of Sciences. Theory and control systems.] 5:84–87.