ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

N. Bazenkov, D. Vorontsov, V. Dyakonova, L. Zhilyakova, I. Zakharov, O. Kuznetsov, S. Kulivets, D. Sakharov Discrete modeling of neuronal interactions in multi-neurotransmitter networks


The paper presents a discrete model of nonsynaptic interactions between neurons of different transmitter phenotypes. The absence of synapses is aimed to demonstrate the importance of heterochemical interactions in the nervous system. In this model, all communications within the ensemble are broadcast: a neuron releases its specific neurotransmitter, and the signal can be received by every other neuron if the latter is sensitive to this neurotransmitter. The model simulates the generation by natural neuronal ensembles of a temporal pattern of output activity, and is aimed to explain the ability to rapidly reconfigure the pattern. Neurons are described as finite-state machines. We discuss and justify the choice of the discrete mathematical framework for modeling the heterochemical interactions in neuronal networks.


discrete dynamics, heterochemical neuronal system, neurotransmitters, neuromodulation

PP. 55-73


1. Mulloney B., Smarandache C. 2010. Fifty years of CPGs: two neuroethological papers that shaped the course of neuroscience. Front. Behav. Neurosci. V. 4. № 45. P. 1-8.
2. Artemov N.M. and Sakharov D.A. 1986. Khachatur Sedrakovich Koshtoyants. M. Nauka. Chapter 3. Raboty po khimicheskim osnovam mekhanizmov nervnoy deyatelnosti. P. 106-162.
3. Buznikov G.A. Donervnyye transmittery kak regulyatory embriogeneza. Sovremennoye sostoyaniye problemy. Ontogenez. 2007. 38(4):262 – 270.
4. Brezina V. 2010. Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 12; 365(1551):2363-2374.
5. Bargmann C.I. 2012. Beyond the connectome: How neuromodulators shape neural circuits. BioEssays 34(6):458–465.
6. Sakharov D.A. 2012. Biologicheskiy substrat generatsii povedencheskikh aktov. Zhurn. obshch. biologii. 73(5):334-348.
7. Marder E., Goeritz M.L., Otopalik A.G. 2015. Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr. Opin. Neurobiol. 31:156-163.
8. Florey E. 1967. Neurotransmitters and modulators in the animal kingdom. Fed. Proc. 26:1164-1178.
9. Sakharov D.A. 1990. Mnozhestvennost' neyrotransmitterov: funktsional'noye znacheniye. Zh. evol. biokhim. fiziol. 26(5):733-741.
10. Harris-Warrick R.M., Marder E., Selverston A.I., Moulins M. (eds). 1992. Dynamic Biological Networks: The Stomatogastric Nervous System. Cambridge, MA: MIT Press.
11. Dickinson P.S. 2006. Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr. Opin. Neurobiol.. Vol. 16. P. 604-614.
12. Katz P., Grillner S., Wilson R., Borst A., Greenspan R., Buzsáki G., Martin K., Marder E., Kristan W., Friedrich R., Chklovskii D. 2013. Vertebrate versus invertebrate neural circuits. Curr. Biol. 23(12):R504-6.
13. Balaban P.M., Vorontsov D.D., D'yakonova V.Ye., D'yakonova T.L., Zakharov I.S., Korshunova T.A., Orlov O.YU., Pavlova G.A., Panchin YU.V., Sakharov D.A., Falikman M.V. 2013. Tsentral'nyye generatory patterna (CPGs). Zhurn. vyssh. nerv. deyat. 63(5):1-21.
14. Dyakonova T.L. 1991. Neyrokhimicheskiye mekhanizmy regulyatsii pachechnoy aktivnosti v izolirovannykh endogennykh ostsillyatorakh ulitki: rol' monoaminov i opioidnykh peptidov. Neyrofiziologiya. 23(4):472–480.
15. Vizi E.S., Kiss J.P., Lendvai B. 2004. Nonsynaptic communication in the central nervous system. Review Neurochem. Int. 45:443-451.
16. De-Miguel F.F., Trueta C. 2005. Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 25:297-312.
17. Sem'yanov A.V. 2005. Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neurosci Behav Physiol 35:253-266.
18. Dyakonova T.L. and Dyakonova V.E. 2010. Coordination of rhythm-generating units via NO and extrasynaptic neurotransmitter release. J. Comp. Physiol. A 196(8):529-541.
19. Botta P., Demmou L., Kasugai Y., Markovic M., Xu C., Fadok J.P., Lu T., Poe M.M., Xu L., Cook J.M., Rudolph U., Sah P., Ferraguti F., Lüthi A. 2015. Regulating anxiety with extrasynaptic inhibition. Nat Neurosci. 18(10):1493-500. doi: 10.1038/nn.4102.
20. Lent C.M., Dickinson M.H. 1984. Serotonin integrates the feeding behavior of the medicinal leech. J. Comp. Physiol. A 154, 457–471
21. Sakharov D.A. (1990) Integrativnaya funktsiya serotonina u primitivnykh Metazoa. Zhurn. obshchey biologii. 51: 437–449.
22. Dyakonova V.Ye. 2001. Povedencheskiye funktsii opioidnykh peptidov u bespozvonochnykh. Zhurn. evol. biokhimii i fiziologii. T. 4. P. 253–261.
23. Dyakonova V.Ye. 2007. Povedencheskiye effekty oktopamina i serotonina: nekotoryye paradoksy sravnitel'noy fiziologii. Uspekhi fiziol. nauk.. 38(3): 3–20.
24. Agnati L.F., Zoli M., Stromberg I., Fuxe K. 1995. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69(3):711-726.
25. Agnati L.F., Guidolin D., Guescini M., Genedani S., Fuxe K. 2010. Understanding wiring and volume transmission. Brain Res. Rev. 64:137-159.
26. Dyakonova V.Ye. 2012. Neyrotransmitternyye mekhanizmy kontekst-zavisimogo povedeniya. Zhurn. vyssh. nerv. deyat. 62(6):1–17.
27. Kabotyanski E.A., Sakharov D.A. 1988. Monoamine dependent behavioural states in the pteropod mollusk Clione limacine . Symp. Biol. Hung. V. 36. P. 463–476.
28. Ghosh D.D., Sanders T., Hong S., McCurdy L.Y., Chase D.L., Cohen N., Koelle M.R., Nitabach M.N. 2016. Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans. Neuron. Nov 12. pii: S0896-6273(16)30780-2.
29. Hummerich R. and Schloss P. 2010. Serotonin—more than a neurotransmitter: transglutaminase-mediated serotonylation of C6 glioma cells and fibronectin. Neurochem. Int. 57, 67-75.
30. Walther D.J., Stahlberg S., and Vowinckel J. 2011. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases. FEBS J. 278, 4740–4755.
31. Evgeny Ivashkin, Marina Yu. Khabarova, Victoria Melnikova, Leonid P. Nezlin, Olga Kharchenko, Elena E. Voronezhskaya, Igor Adameyko. 2015. Serotonin Mediates Maternal Effects and Directs Developmental and Behavioral Changes in the Progeny of Snails. Cell Reports. V. 12. P. 1144–1158.
32. Werner FM, Covenas R. 2014. Classical Neurotransmitters and Neuropeptides involved in Parkinson’s Disease: A Multi-Neurotransmitter System. J Cytol Histol 5:266.
33. Abbott, L.F. 1999. Lapique’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin 50 (5/6): 303–304.
34. Hodgkin, A. L. and Huxley, A. F. 1952. A quantitative description of membrane current and its applications to conduction and excitation in nerve. J. Physiol. (Lond.), 116. P. 500–544.
35. FitzHugh R. 1969. Mathematical models of excitation and propagation in nerve. Chapter 1 (pp. 1–85 in H.P. Schwan, ed. Biological Engineering, McGraw–Hill Book Co., N.Y.)
36. Nagumo J., Arimoto S., and Yoshizawa S. 1962. An active pulse transmission line simulating nerve axon. Proc. IRE. 50:2061–2070.
37. Morris, C., Lecar, H., 1981. Voltage Oscillations in the barnacle giant muscle fiber, Biophys. J., 35 (1): 193–213.
38. Vavoulis D., Straub V., Kemenes I., Kemenes G., Feng J., Benjamin P. 2007. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. European Journal of Neuroscience, Vol. 25, pp. 2805–2818, 2007.
39. Borisyuk, G.N. i dr. 1992. Ostsillyatornyye neyronnyye seti. Matematicheskiye rezul'taty i prilozheniya, Matem. modelirovaniye, 4:1. 3–43.
40. Tsukerman V.D., Kulakov S.V. 2015. A temporal ratio model of the episodic memory organization in the ECI-networks. Contemporary Engineering Sciences 8, 865–876.
41. Tsukerman V.D. 2016. Matematicheskaya model' resheniya kognitivnykh zadach v pariyetal'noy kore mozga. Sed'maya mezhdunarodnaya konferentsiya po kognitivnoy nauke:Tezisy dokladov. Svetlogorsk, 20–24 iyunya 2016 g. M.: Izd-vo «Institut psikhologii RAN». P. 610–612.
42. Hyafil, A., Fontolan, L., Kabdebon, C., Gutkin, B., Giraud, A.L. 2015. Speech encoding by coupled cortical theta and gamma oscillations. eLife. 4:e06213
43. Koch, C.; Segev, I. 1999. Methods in neuronal modeling: from ions to networks (2nd ed.). Cambridge, Massachusetts: MIT Press. 687 p.
44. Sterratt, D., Graham, B., Gillies, A., Willshaw, D. 2011. Principles of computational modelling in neuroscience /. — Cambridge University Press.
45. Ghigliazza, R., Holmes, P. 2004. Minimal models of bursting neurons: The effects of multiple currents and timescales. SIAM J. Appl. Dyn. Syst., Vol. 3, No. 4, pp. 636–670.
46. Ghigliazza, R., Holmes, P. 2004. A Minimal Model of a Central Pattern Generator and Motoneurons for Insect Locomotion. SIAM J. Appl. Dyn. Syst., Vol. 3, No. 4, pp. 671–700.
47. Roberts A. et. al. 2014. Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior? The Journal of Neuroscience, January 8, 34(2):608–621.
48. Rabinovich M.I., Myuyezinolu M.K. 2010. Nelineynaya dinamika mozga: Emotsii i intellektual'naya deyatel'nost'. Uspekhi fizicheskikh nauk. T. 180. № 4. P. 371–386.
49. McCulloch W.S., Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., v.5, pp.115-133.
50. Kleene S.C. 1956. Representation of Events in Nerve Nets and Finite Automata. In Automata Studies. C.E.Shannon and J.McCarthy, eds. Princeton, Princeton University Press.
51. Rosenblatt, F. 1962. Principles of Neurodynamic: Perceptrons and the Theory of Brain Mechanisms. – Washington, D.C.: Spartan books. – 616 p.
52. Amari S.I. 1972. Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Transactions on Computers, 100 (21), n.11: 1197-1206.
53. Wang R.-S., Albert R. 2013. Effects of community structure on the dynamics of random threshold networks. Physical Review, v. E87.
54. Minsky M. and Papert S.A. 1969. Perceptrons, An Introduction to Computational Geometry – The MIT Press, – 308 pp.
55. Hopfield J.J. 1982. Neural networks and physical systems with emergent collective computational abilities, Proceedings of National Academy of Sciences, vol. 79 no. 8.
56. Haykin S. 1999. Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-Hall.
57. Haykin S. 2009. Neural Networks and Learning Machines (3rd Edition), Prentice-Hall.
58. LeCun, Y., Bengio, Y., Hinton, G. Deep learning. 2015. Nature 521 (7553). P. 436–444.
59. Goodfellow, I., Bengio,Y., and Courville, A. 2016. Deep Learning. MIT Press. 787 p.
60. Deng, L.; Yu, D. 2014. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing. 7 (3-4): 1–199.
61. Convolutional Neural Networks (LeNet) - DeepLearning 0.1 documentation. DeepLearning 0.1. LISA Lab. URL: (дата обращения 03.11.2016)
62. Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. 2007. Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19, MIT Press, Cambridge, MA.
63. Hinton, G.E., Osindero, S., and Teh, Y.W. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554.
64. Dorogovtsev S. 2010. Lectures on Complex Networks. Oxford: Oxford Univer. Press. 144 p.
65. Jackson M.O. 2008. Social and Economic Networks. Prinston Univer. Press.
66. Kuznetsov O.P. 2015. Complex networks and activity spreading. Automation and Remote Control. Vol. 76, No. 12, P.2091-2109.
67. Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., Christiansen, M.H. 2013. Networks in Cognitive Science // Trends in Cognitive Sciences. July. Vol. 17, No. 7
68. Bullmore, E. Sporns, O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems // Nature Reviews Neuroscience 10, 186-198.
69. Project “Open Connectome”.
70. Roberts, P.D. 1998. Classification of Temporal Patterns in Dynamic Biological Networks. Neural Computation. Vol. 10, No. 7, p. 1831-1846. Massachusetts Institute of Technology.
71. Burks A.W., Wright G.B. 1953. Theory of logical nets // Proc. IRE. V. 41. No. 10. P. 1357–1365.
72. Zhilyakova L.Yu. 2015. Setevaya model' rasprostraneniya neskol'kikh vidov aktivnosti v srede slozhnykh agentov i yeyo prilozheniya // Ontologiya proyektirovaniya. Tom 5. №3(17). P. 278-296.
73. Zhilyakova L.Yu., Kuznetsov O.P. 2016. Printsipy diskretnogo modelirovaniya geterokhimicheskikh mekhanizmov v nervnykh sistemakh // XVIII mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Neyroinformatika-2016»: Sbornik nauchnykh trudov. V 3-kh chastyakh. CH.3. M.: NIYAU MIFI, P. 82–90.
74. MultiCPG: Multi-transmitter central pattern generator simulation tool. – URL: