ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

V. P. Fralenko, M. V. Khachumov, M. V. Shustova Allocation and cognitive visualization of transplanted mesenchymal stem cells in images of a magnetic resonance tomography


The analysis of the current state of research in the field of scientific visualization of transplanted mesenchymal stem cells in images of a magnetic resonance tomography is given. A set of algorithms for solving problems of image processing for automatic allocation and in vivo visualization of stem cells transplanted in recipients brain is offered. As experimental animals rats are used. It is assumed that the complex will be use as a basis of software for medical researchers.


magnetic resonance tomography, ischemic lesion, recognition, visualization, mesenchymal stem cells, preprocessing, segmentation, filtering, comparative analysis.


1. Nejadnik H., Castillo R., Daldrup-Link H.E. Magnetic Resonance Imaging and Tracking of Stem Cells // Methods in Molecular Biology. – 2013, 1052: P.167-176.
2. Lyzikov A.N., Osipov B.B., Skuratov A.G., Prizencov A.A. 2015. Stvolovye kletki v regenerativnoj medicine: dostizheniya i perspektivy [Stem cells in regenerative medicine: achievements and prospects]. Problemy zdorovya i ehkologii [Health and Environment Issues] 3:54-57.
3. Li Y., Yao Y., Sheng Z., Yang Y., Ma G. Dual-modal tracking of transplanted mesenchymal stem cells after myocardial infarction // International Journal of Nanomedicine. Apr 2011. – P. 815-823.
4. Tang Y. et al. MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model // HHS Public Access. – 2015.–23 p.
5. Rabbani H., Javanmard S. H. Image analysis in In Vivo Stem Cell Tracking // Annual Review & Research in Biology. – 2011, 1(4): P.123-142.
6. Kachouie N.N., Fieguth P., Ramunas J., Jervis E. Probabilistic model-based cell tracking //International Journal of Biomedical Imaging. – 2006. – P.1-10.
7. Wählby C., Sintorn I.M., Erlandsson F., Borgefors G., Bengtsson E. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections // Journal of Microscopy. – Jul 2004. Vol. 215. – P.67-76.
8. Degtyareva A.A. 2007. Deformiruemye modeli v zadache lokalizacii ob’ekta na izobrazhenii [Deformable models in the problem of the object localization in images]. Materialy X Nauchno-prakticheskogo seminara «Novye informacionnye tekhnologii v avtomatizirovannyh sistemah» [Proceedings of the X Scientific-practical seminar "New information technologies in automated systems"]. Available at: (accessed January
12, 2017).
9. Zimmer C., Labruyère E., Meas-Yedid V., Guillén N., Olivo-Marin J.C. Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours, a tool for cell-based drug testing //IEEE Transactions on Medical Imaging. – 2002, 21(10): P.1212-1221.
10. Padfield D., Rittscher J., Thomas N., Roysam B. Spatio-temporal cell cycle phase analysis using level sets and fast marching methods // Medical Image Analysis. – 2009, 13(1): P.143-155.
11. Amr Ellabban. Computer Vision for the Analysis of Cellular Activity. University of Oxford, 2014 [Электронный ресурс]. URL: (дата обращения: 12.01.2017).
12. Computational Analysis: A Bridge to Translational Stroke Treatment // Translational Stroke Research. – 2012. – P.881-909.[Электронный ресурс]. URL: (дата обращения: 12.01.2017).
13. Roy S., Nag S., Maitra I. K., Bandyopadhyay S. K. A Review on Automated Brain Tumor Detection and Segmentation from MRI of Brain // International Journal of Advanced Research in Computer Science and Software Engineering (IJASRCSSE). – 2013, 3(6). – 41 p.
14. Smita Zol, Dr. R. R. Deshmukh. A Study of Segmentation Methods for Detection of Diseases from Brain MRI // International Journal of Science and Research (IJSR). – Dec 2014. Vol. 3. – P.1959-1963.
15. Sun Y., Yu X., Berilla J. An innovative non-invasive ECG sensor and comparison study with clinic system. Proceedings of
39th IEEE Annual Northeast Bioengineering Conference (NEBEC), 2013. P. 163-164.
16. Jain U., Tan B., Li Q. Concealed knowledge identification using facial thermal imaging. Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012. P. 1677-1680.
17. Fralenko V.P., Khachumov M.V., Shustova M.V. 2016. Analiz instrumental'nyh sredstv obrabotki i vizualizacii biomedicinskih dannyh magnitno-rezonansnoj tomografii (obzor literatury) [Analysis of instrumental means processing and visualization of biomedical data of magnetic resonance imaging (literature review)]. Vestnik novyh medicinskih tehnologij [Journal of new medical technologies] 4:307-315.
18. Lafferty, J., McCallum, A., Pereira, F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data // Proc. 18th International Conf. on Machine Learning. – 2001. – P.282-289. [Электронный ресурс]. URL: (дата обращения: 12.01.2017).
19. Project X Research | DGM [Электронный ресурс]. URL: (дата обращения: 12.01.2017).
20. Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction // Pattern Recognition, ICPR. – 2004. Vol. 2. – P. 28-31.
21. CSIFT Class Reference [Электронный ресурс]. URL: (дата обращения: 12.01.2017).
22. Yedidia, J.S., Freeman, W.T., Weiss Y. Understanding Belief Propagation and Its Generalizations // Exploring Artificial Intelligence in the New Millennium. – Jan 2003. – P.239-236.
23. Fralenko V. P. 2014. Metody teksturnogo analiza izobrazhenij, obrabotka dannyh distantsionnogo zondirovaniya Zemli [Methods of image texture analysis, Earth remote sensing data processing]. Programmnye sistemy: teoriya i prilozheniya [Program systems: theory and applications]. 4:19-39.