ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

A.A. Kulinich Model of command behavior of agents in a qualitative semiotic environment Part 1. Qualitative functioning environment. Basic definitions and statement of the problem

Abstract.

The mathematical model of formation and functioning of the team of artificial intelligence agents with BDI architecture in a qualitative semiotic (sign) environment of functioning is considered in the work. As the basis of the mathematical model of the environment of functioning, the model of the multi-agent dynamic system "Group of robots-Environment " was chosen. A method for structuring the environment of functioning in the form of a partially ordered set of embedded subspaces of the state space of a dynamical system and a method for symbolizing the classes of states by symbol names that define these classes are proposed. Such a structure is defined as a qualitative conceptual framework of the environment and is called the semiotic environment of functioning. In terms of a qualitative semiotic functioning environment, a mathematical model of an intelligent agent with a BDI architecture is proposed, and the conditions for the formation and functioning of teams of intelligent agents in this environment are formulated.

Keywords:

multi-agent system, agent, functioning environment, qualitative semiotic environment.

PP. 38-48.

REFERENCES

1. Kalyayev I.A., Gayduk A.R., Kapustyan S.G. Modeli i algoritmy kollektivnogo upravleniya v gruppakh robotov [Models and algorithms of collective control in groups of robots] / M .: FIZMATLIT, 2009. 279 s.

2. Gorodtskiy V.I. Teoriya, modeli, infrastruktura i yazyki. Obzor (Chast' 1) [Theory, models, infrastructures and languages of the specification of command behavior of autonomous agents. Review (Part 1)] // Iskusstvennyy intellekt i prinyatiye resheniy [Artificial Intelligence and Decision Making]. - 2011. - №2. - P. 19-30.
3. Novikov D.A. Matematicheskiye modeli formirovaniya i vzaimodeystviya komand [Mathematical models of the formation and functioning of teams]. - M .: FIZMATLIT, 2008. - 184 p.
4. Wooldridge M. J. The Logical Modeling of Computational Multi-Agent Systems. PhD thesis. Manchester. 1992.. 153 p.
5. Kripke S. Semantic Analysis of Modal Logic. Zeitschrift fur Matematische Logik und Grundlagen der Matematik, No.9, 1963, pp. 67-96.
6. Rao A.S., Georgeff M.P. BDI Agents: From Theory to Practice // Proc. First International Conference on Multi-Agent Systems (ed. V.Lesser). – AAAI Press/The MIT Press, 1995. – P. 312–319.
7. Cohen P., Levesque H.J. Teamwork. Nous, 25(4), (1991) Special Issue on Cognitive Science and Artificial Intelligence, P. 487-512.
8. Grosz B., Kraus S. Collaborative Plans for Complex Group Actions // Artificial Intelligence. – 1996. – №86. – P. 269–358.
9. Tsetlin M.L. Issledovaniya po teorii avtomatov i modelirovaniyu biologicheskikh system [Studies in the theory of automata and the modeling of biological systems]. - M .: Nauka, 1969. 316 p.
10. Stefanyuk V.L., Tsetlin M.L. O regulirovke moshchnosti v kollektive radiostantsiy [On the regulation of power in the collective radio stations] // Problemy peredachi informatsii [Problems of information transfer]. - 1967. - T. 3, №4. - S. 59-67.
11. Varshavskiy V.I., Pospelov D.A. Orkestr igrayet bez dirizhera [The orchestra plays without a conductor]. - M: Nauka 1984. - 208 s.
12. Karpov V. E. Modeli sotsial'nogo povedeniya v gruppovoy robototekhnike [Models of social behavior in group robotics] / Upravleniye bol'shimi sistemami [Large-scale Systems Control. Issue 59]. Vypusk 59. M .: IPU RAN, 2016. S.165-232.
13. Pavlovskiy V.Ye., Pavlovskiy V.V. Matematicheskaya model' dvumernoy gomogennoy stai robotov [Mathematical model of a two-dimensional homogeneous swarm of robots] // Iskusstvennyy intellekt i prinyatiye resheniy [Artificial Intelligence and Decision Making]. M .: URSS, 2015, №4, p. 62-71.
14. Owen G. Teoriya igr [Game theory]. - M.: Mir, 1971. - 230 p.
15. Smirnov A.V., Sheremetov L.B. Modelirovaniye koalitsiy kooperativnykh agentov: sostoyaniye i perspektivy issledovaniy [Models for forming coalitions of cooperative agents: the state and prospects of research]// Iskusstvennyy intellekt i prinyatiye resheniy [Artificial Intelligence and Decision Making]. - 2011. - №1. - S. 36-48.
16. Conte R., Edmonds B., Moss S. and etc. Sociology and Social Theory in Agent Based Social Simulation // A Symposium: Computational and Mathematical Organization Theory. – 2001. – Vol. 7, №3. – P. 183–205.
17. Sichman J., Conte R., Castelfranchi C. et al. A social reasoning mechanism based on dependence networks // Proc. 11th European Conference on Artificial Intelligence (ECAI), Amsterdam, Netherlands, 1994 – P. 188–192.
18. Tarasov V.B. Ot mnogoagentnykh sistem k intellektual'nym organizatsiyam [From multi-agent systems to intelligent organizations]. - M .: Editorial URSS, 2002. - 352 s.
19. Kulinich A.A. Kontseptual'nyye karkasy ontologiy slabo strukturirovannykh predmetnykh oblastey [Conceptual frameworks of ontologies of Ill-structured subject domains] // Iskusstvennyy intellekt i prinyatiye resheniy [Artificial intelligence and decision making]. 2014. № 4. S. 31-41.
20. Biryukov B.V. Teoriya smysla Gotloba Frege [Theory of the meaning of Gottlob Frege]/ V kn.: Primeneniye logiki v nauke i tekhnike [In: Application of logic in science and technology]. - M .: Izd-vo AN SSSR, 1960. - S. 502-555.