ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

I.V. Ashikhmin, Е.M. Furems Two-Stage Procedure for Items’ Ordering upon Multiple Criteria


Two-stage procedure for items ordering upon multiple criteria according to DM’s preferences is proposed for inverse multicriteria bin packing problem solving. If such a problem arises repeatedly for different set of items, estimated upon the same criteria with the same scales, the STEPCLASS method is applied at the first stage for preliminary multicriteria sorting on the Cartesian product of the criteria’ scales. Then, it allows determining a class for each item from each new set without DM’s participation. In the case of necessity to order more precisely the objects from particular set within the only class, the UniComBOS method is applied at the second stage. It is shown that it is possible to use DM’s preferences extracted at the stage of multicriteria sorting as source information for the UniComBOS method.


multicriteria sorting, multicriteria ordering, criteria preference-independence, consistency of preferences, class borders, STEPCLASS, UniComBOS.

PP. 58-68.


1. Furems, E.M., Obratnaya zadacha upakovli pri nalichii kachestvennyh kriteriev [Inverse bin packing problem with multiple qualitative criteria]. Iskusstvennyi Intellekt i Prinyatie Reshenii [Artificial Intelligence and Decision Making], 2016, No.3, pp. 31-43.
2. Martello, S., & Toth, P. 1980. Solution of the zero-one multiple knapsack problem// European Journal of Operational Research, 4(4), 276-283.
3. Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., & Graham, R. L. 1974. Worst-case performance bounds for simple one-dimensional packing algorithms//SIAM Journal on Computing, 3(4), 299-325.
4. Coffman, E.G., Jr., Leung, J.Y.-T., Ting, D. 1978. Bin Packing: Maximizing the Number of Pieces Packed// Acta Infomat., vol. 9, 263-271.
5. Ashikhmin, I.V., Productzionnye pravila I predpochtenya [Production rules and preferences]. Trudy Tretyey Mezhdunarodnoy konferentzyi ‘Sistemnyi Analiz i Informatzionnye Tehnologii’ (SAIT – 2009) [Proceedingth of the 3rd International Conference ‘System Analysis and Information Technology’ (SAIT 2009)]. M, 2009, pp. 247-251.
6. von Neumann, J. and Morgenstern, O., 1947. Theory of games and economic behavior, 2nd ed. Princeton University Press, Princeton.
7 Keeney, R., Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. J. Wiley, New York.
8. Figueira, J., Mousseau, V., Roy, B., 2005. Electre methods. In: Figueira J, Greco S, and Ehrgott M (eds) Multiple Criteria Decision Analysis: State of the Art Surveys. Springer-Verlag, Boston, pp. 133-162.
9. Greco, S., Matarazzo, B., Slowinski, R., 2002. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research, vol. 138: 247-259.
10. Greco, S., 2008. Dominance-based Rough Set Approach for Decision Analysis –a Tutorial. Lecture Notes in Computer Science, vol. 5009/2008: 23-24.
11. Zadeh, L., 1965. Fuzzy sets. Information Control, vol. 8: 338-353
12. Larichev, O.I., Moshkovich, E.M., 1996. Kachestvennye metody prinyatya reshenii [Qualitative methods of decision making], M.: ‘Fizmatlit’.
13. Saaty, T.L., The Analytic Hierarchy Process. 1980. NewYork, USA: McGraw Hill,
14. Larichev, O.I., Mechitov, A.I., Moshkovich, E.M., Furems, E.M., 1989. Выявление экспертных знаний [Expert’s knowledge acquisition]. М.: ‘Nauka’.
15. Larichev O.I., Moshkovich H.M., Furems E.M., Mechitov A.I., Morgoev V.K. 1991. Knowledge Acquisition for the Construction of the Full and Contradiction Free Knowledge Bases. Iec ProGAMMA, Groningen, The Netherlands.
16. Larichev, O., Kochin, D., Kortnev, A. 2002. Decision Support System for Classification of a Finite Set of Multicriteria Alternatives. Decision Support Systems. 33:13-21
17. Larichev, O.I., Bolotov A.A., 1996. Sistema ‘DIFCLASS’: postroenie polnyh and neprotevorechivyh baz expertnyh znanyi v zadachah differentzial’noi diagnostiki [System DIFCLASS for constructing complete and non-contradictory expert’s knowledge bases in differential diagnostics problems]// Nauchno-technicheskaya informatzia [Scientific and Engineering Information], series 2, VINITI, 9:9-15.
18. Furems, E.M., 2012. Mnogocriterial’naya poryadkovaya klassificatzia na osnove metoda STEPCLASS [STEPCLASS-based approach to multicriteria sorting]// Iskusstvennyi Intellekt i Prinyatie Reshenii [Artificial Intelligence and Decision Making], No.4, pp. 95-100.
19. Larichev O.I., Moshkovich H.M. 1995. ZAPROS-LM – A method and system for ordering multiattribute alternatives// European Journal of Operational Research 82, 503-521.
20. Larichev O.I., Moshkovich H.M. 1997. Verbal Decision Analysis for Unstructured Problems. Kluwer Academic Publishers, Berlin.
21. Moshkovich H.M., Mechitov A.I., Olson D.L., 2002. Ordinal judgements in multiattribute decision analysis. European Journal of Operational Research 137, 625-641.
22. Ashikhmin I., Furems E. 2005. UniComBOS—Intelligent Decision Support System for multi-criteria comparison and choice //Journal of Multi-Criteria Decision Analysis. – V. 13. – No. 2-3: 147-157.
23. Simon H. 1960. The New Science of Management Decision. Harper and Row, New York
24. Furems, E.M., 2007. Structurizatzia zadach klassifikatzii osnovannyh na znaniah [Structuring of knowledge-based classification problems]/ ]// Iskusstvennyi Intellekt i Prinyatie Reshenii [Artificial Intelligence and Decision Making], no. 3, pp. 7-17
25. Furems Eugenia M. 2001. Domain Structuring For Knowledge-Based Multiattribute Classification (A Verbal Decision Analysis Approach) TOP, Springer Berlin / Heidelberg, 19:402–420
26. Fishburn P. C. Utility theory for decision making. – Research Analysis Corp Mclean va, 1970. – №. RAC-R-105.