ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

S.I. Matorin, A.G. Zhikharev, O.A. Zimovets Objects calculus in the system-object method of knowledge representation


In work methods of formalization of the system approach " Unit-Function-Object" and the system-object method of representation of knowledge based on this approach are considered. The expediency of applying for some further formalization some ideas of the objects calculation of Abadi-Cardeli and the patterns theory of Grenander is substantiated. By analogy with the above algebraic apparatus, the calculus of special objects that represent elements of system-object models, which includes graphic formulism and basic operations with objects, has been developed. It is shown that with the help of the proposed formal-semantic alphabet of special objects, it is possible to simplify the procedure for decomposition of a complex system on the basis of the basic hierarchy of classes of systemic connections. A substantiation of a number of system-wide regularities is given.


system approach "Unit-Function-Object", system-object method of knowledge representation, object calculus, graphic formalism, operations with special objects, formal-semantic alphabet, system-wide regularities.


1. Zhiharev A.G., Matorin S.I., Mamatov E.M., Smorodina N.N. 2013. O sistemno-ob#ektnom metode predstavlenija organizacionnyh znanij [On the system-object method of representing organizational knowledge]. Nauchnye vedomosti BelGU. Ser. Informatika [Scientific bulletins of BelSU. Ser. Computer science] 8 (26/1): 137-146.
2. Zhiharev A.G., Matorin S.I., Zajceva N.O. 2015. Sistemno-ob#ektnyj instrumentarij dlja imitacionnogo modelirovanija tehnologicheskih processov i transportnyh potokov [System-object tools for simulation modeling of technological processes and transport flows]. Iskusstvennyj intellekt i prinjatie reshenij [Artificial Intelligence and Decision Making] 4: 95-103.
3. Uzel-Funkciya-Ob#ekt [Unit-Function-Object] Available at: (accessed March 15, 2017)
4. Abadi Martin and Luca Cardelli. 1996. A Theory of Objects. New York: Springer-Verlag. 397p.
5. U. Grenander. 1976. Lectures in Pattern Theory. Volume 1. Pattern Synthesis. New York: Springer-Verlag. 384p.
6. R. Milner. 1999. Communicating and Mobile Systems: the π-Calculus. Cambridge: Cambridge University Press. 164.
7. Matorin S.I., El'chaninov D.B., Zin'kov S.V., Matorin V.S. 2006. Sintez i analiz sistem v svete podkhoda «Uzel-Funkciya-Ob"ekt» [Synthesis and analysis of systems in the light of the "Node-Function-Object" approach]. NTI. Ser. 2 [Scientific and technical information. Series 2]. 8: 10-16.
8. Zimovec O.A., Matorin S.I., Cocorina N.V., Gul' S.V. 2014. Ischislenie funkcij ─ algebraicheskij apparat processnogo podhoda [Functions calculus of is the algebraic apparatus of the process approach]. Nauchnye vedomosti BelGU. Ser. Informatika [Scientific bulletins of BelSU. Ser. Computer science]. 21(32/1): 154-161.
9. Zimovets O., Matorin S. 2013. Integration of Formalization Tools for Graphical–Analytical «Unit–Function–Object» Models. Scientific and Technical Information Processing. 40(6): 1–7.
10. Mel'nikov G.P. 1978. Sistemologiya i yazykovyye aspekty kibernetiki [Systemology and language aspects of cybernetics]. M.: Sov. Radio. 368.
11. Matorin S.I., Zimovec O.A., Trubicin S.N. 2008. Vizual'nye grafoanaliticheskie modeli dlja predstavlenija znanij o servisnom obsluzhivanii teleradioseti [Visual graphoanalytical models for representation of knowledge about the service of the television and radio network]. Iskusstvennyj intellekt i prinjatie reshenij [Artificial Intelligence and Decision Making] 3: 34-45.