ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

A.O. Shevlyakov, M.G. Matveev A comparison of different fuzzy arithmetics

Abstract.

In our previous research, we proposed the algebra of double component numbers. In this paper we compare
it with two other approaches to the implementation of fuzzy calculations. The first approach is the Zadeh’s extension principle. The second approach is the single level constraint interval arithmetic. The paper shows the relations between the parameters of the calculation results with these approaches. The results of these approaches are compared in some numerical examples.

Keywords:

fuzzy algebraic structure, fuzzy arithmetic.

PP. 60-68.

References

1. Zadeh L.A. 1975. The concept of a linguistic variable and its application to approximate reasoning, Parts 1, 2, 3. Information Sciences. 8:43–80,199–249,301–357.
2. Dubois D, Prade H. 1978. Operations on fuzzy numbers. International Journal of Systems Science. 9(6):613–626.
3. Klir G.J. 1997. Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems. 91:165–175.
4. Lodwick W.A. 1999. Constrained interval arithmetic. CCM report. 138:1-11.
5. Piegat A. 2001. Fuzzy Modeling and Control. Springer-Verlag. 728 p.
6. Nagoor Gani A., Mohamed Assarudeen S.N. 2012. A New Operation on Triangular Fuzzy Number for Solving Fuzzy Linear Programming Problem. Applied Mathematical Sciences. 11:525–532.
7. Chalco-Cano Y., Lodwick W.A., Bede B. 2014. Single level constraint interval arithmetic. Fuzzy Sets and Systems. 257:146–168.
8. Vorontsov Y.A., Matveev M.G. 2014. Algebraicheskie operacii s nechetkimi LR-chislami s ispol'zovaniem preobrazovanija L [Ltransform Based Algebraic Operations on fuzzy LR-numbers]. Programmnaja inzhenerija [Software Engineering]. 8:23-29.
9. Matveev M.G., Vorontsov Y.A., Kanishcheva O.I. 2014. Arifmeticheskie operacii nad dvuhkomponentnymi nechetkimi chislami [Arithmetic operations over two-component fuzzy numbers]. Vestnik Voronezhskogo gosudarstvennogo universiteta, serija "Sistemnyj analiz i informacionnye tehnologii" [Scientific journal Proceedings of Voronezh State University. Ser. Systems Analysis and Information Technologies]. 2:75-82.
10. Goetschel Jr. R., Voxman W. 1986. Elementary fuzzy calculus. Fuzzy Sets and Systems. 18:31–43.
11. Matveev M.G. 2015. Analiz i reshenie zadach vybora s parametricheskoj nechetkost'ju [Analyzing and Solving Problems of Decision Making with Parametric Fuzzy]. Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta, serija "matematicheskoe modelirovanie i programmirovanie" [Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software]. 8(4):14-29.