ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V.D. Noghin Ultimate possibilities of the Рareto set reduction based on quanta of fuzzy information

Abstract.

The problem of multicriteria choice with a fuzzy preference relation is considered, the main objects of which are a set of feasible alternatives, a numerical vector criterion and the fuzzy preference relation of the decision maker (DM). Concepts of a fuzzy vector space, a polyhedral fuzzy set and the distance between convex fuzzy sets and cones are used. To reduce the Pareto set the ultimate possibilities of information about the fuzzy preference relation in the form of quanta of information set are studied. It is proved that in a sufficiently wide class of above problems with a finite set of quanta of fuzzy information, one can arbitrarily accurate approximate an initially unknown fuzzy set of nondominant elements.

Keywords:

multicriteria choice problem, reduction of the Pareto set, quanta of fuzzy information, completeness theorem

PP. 69-77.

References

1. Podinovskij V.V., Noghin V.D. Pareto-optimal'nye resheniya mnogokriterial'nyh zadach (2-e izd., ispr. i dop.). M. Fizmatlit. 2007.
2. Noghin V.D. Problema suzheniya mnozhestva Pareto: podhody k resheniyu // Iskusstvennyj intellekt i prinyatie reshenij. 2008. № 1. S. 98-112.
3. Noghin V.D. Suzhenie mnozhestva Pareto: aksiomaticheskij podhod. M. Fizmatlit. 2016.
4. Noghin V.D. Approximation of convex fuzzy sets. Abstracts of the Intrenational Conference «Constructive Nonsmooth Analysis and Related Topics» (dedicated to the memory of V.F. Demyanov) (CNSA), St. Petersburg. May 22-27. 2017. P. 127-129.
5. Lowen R. Convex fuzzy sets // Fuzzy sets and systems. 1989. V. 3. P. 291-310.
6. Leichtweiβ K. Konvexe Mengen. Berlin. Verlag. 1980.
7. Noghin V.D., Baskov O.V. Pareto Set Reduction Based on an Arbitrary Finite Collection of Numerical Information on the Preference Relation // Doklady Mathematics. 2011. Vol. 83. No. 3. P. 418-420.
8. Noghin V.D. Reducing of the Pareto Set Algorithm Based on an Arbitrary Finite Set of Information Quanta // Scientific and Technical Information Processing. 2014. V. 41, No 5, P. 309-313.
9. Orlovskij S.A. Problemy prinyatiya reshenij pri nechetkoj iskhodnoj informacii. M. Nauka. 1981.