ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V.A. Smirnov, D.V. Smirnov Development of a conceptual model of artificial immune system prediction of the drift parameters of the onboard equipment

Abstract.

The problem of forecasting the drift of onboard equipment parameters is considered in the article. The purpose of this work is the formation of basic requirements, principles of construction, functioning and development of the conceptual model of the artificial immune system (IIS) for predicting the drift of critical parameters of an onboard automated control system (OACS) the flying machine (FM). Specificity of time series and scope is determined, biological models and heuristic methods for the proposed approach to forecasting are substantiated and selected. The comparison of the applied biological terms with their analogues from the subject domain is given. Proposed: a formal description and a conceptual model of IIS, structure of antigen, antibody and memory cells, a set of indicators of the quality of forecasting. The IIS model considered in the work has prospects for the successful application at the enterprises of the rocket and space industry in the creation of intelligent decision support systems (ISPPR) for the acceptance control of complex technical systems.

Keywords:

prognostication, onboard automated control system, aftificial immune systems, modified clonal selection algorithm, conclusion on precedents, spline approximation

PP. 95-108.

References

1. Smirnov, V.A. 2014. Priemochnyy kontrol' bortovykh sistem upravleniya s ispol'zovaniem sredstv intellektual'nogo analiza dannykh [Acceptance inspection of onboard control systems with the use of data mining]. T-Comm: Telekommunikatsii i  transport [T-Comm: Telecommunications and transport]. Vol.8, No.11, P. 99-103.
2. Smirnov, V.A. 2013. Pretsedentnyy podkhod k postroeniyu modeley protsessa poiska neispravnostey pri diagnostirovanii slozhnykh tekhnicheskikh system [Precedential approach to model building process troubleshooting for diagnosing complex technical systems]. T-Comm: Telekommunikatsii i transport [T-Comm: Telecommunications and transport]. No.6, P. 73-78.
3. Larin, V.P., V.A. Smirnov. 2014. Intellektualizatsiya tekhnologii priemochnogo kontrolya slozhnykh tekhnicheskikh ob"ektov [Intellectualization of acceptance control technology of complex technical objects]. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk state University of control systems and Radioelectronics]. No.1, P. 191 -196.
4. Dasgupta, D. 1999. Artificial immune systems and their applications. Berlin: Springer-Verlag. 320 p.
5. Korablev, N.M., G.S Ivashchenko. 2014. Gibridnyy metod kratkosrochnogo prognozirovaniya vremennykh ryadov na osnove modeli klonal'nogo otbora [A hybrid method of short-term time series forecasting based on the model of clonal selection]. Neyroinformatika: nauchno-tekhnicheskaya konferentsiya s mezhdunarodnym uchastiem: sbornik nauchnykh trudov  [Neuroinformatics: scientific-technical conference with international participation: collection of scientific works]. Vol.1, P. 79–89.
6. Demidova, L.A., A.V. Koryachko, T.S. Skvortsova. 2010. Modifitsirovannyy algoritm klonal'nogo otbora dlya analiza  vremennykh ryadov s korotkoy dlinoy aktual'noy chasti [Modified clonal selection algorithm for the analysis of time series with  short length of actual part]. Sistemy upravleniya i informatsionnye tekhnologii [Control systems and information technology].  Vol.42, No.4.1, P. 131-136.
7. Samigulina, G.A. 2010. Razrabotka intellektual'nykh ekspertnykh sistem prognozirovaniya i upravleniya na osnove iskusstvennykh immunnykh sistem [Development of intellectual expert systems of forecasting and control based on artificial immune systems]. Problemy informatiki [The problems of computer science]. No.1, P. 15-22.
8. Bidyuk, P.I., V.I. Litvinenko, I.V. Baklan, A.A. Fefelov. 2004. Algoritm klonal'nogo otbora dlya prognozirovaniya nestatsionarnykh dinamicheskikh system [A clonal selection algorithm for forecasting non-stationary dynamical systems]. Iskusstvennyy intellect [Artificial intelligence]. No.4, P. 89-99.
9. Smirnov, V.A., D.V. Smirnov. 2017. Razrabotka kontseptual'noy modeli sistemy podderzhki prinyatiya resheniy dlya  priemochnogo kontrolya bortovoy apparatury [Development of a conceptual model of the system of decision support for acceptance control of onboard equipment]. Vestnik SibGAU [Vestnik SibGAU]. Vol.18, No.1, P. 149-159.