ISSN 2071-8594

Российская академия наук

Главный редактор

Академик С. В. Емельянов

М.Ю. Чесноков "Поиск аномалий во временных рядах на основе ансамблей алгоритмов DBSCAN"

Аннотация.

В статье предложен метод построения ансамбля на основе алгоритма DBSCAN, использующий внутреннюю структуру временных рядов для адаптивного подбора входных параметров, экспериментально показывающий меньший разброс и высокие значения качества выявления аномалий на реальных и синтетических данных по сравнению с рядом популярных подходов.

Ключевые слова:

поиск аномалий, временной ряд, ансамбль алгоритмов, DBSCAN.

Стр. 99-107.

Литература

1. Chandola V., Banerjee A., Kumar V. Anomaly detection: A survey //ACM computing surveys (CSUR). – 2009. – Т. 41.
2. Zimek A., Campello R. J. G. B., Sander J. Ensembles for unsupervised outlier detection: challenges and research questions a position paper //Acm Sigkdd Explorations Newsletter. – 2014. – Т. 15. – №1. – С. 11-22.
3. Aggarwal C. C. Outlier Analysis Second Edition. – 2016.
4. Gupta M. et al. Outlier detection for temporal data: A survey //IEEE Transactions on Knowledge and Data Engineering. – 2014. – Т. 26. – № 9. – С. 2250-2267.
5. Aggarwal C. C., Sathe S. Theoretical foundations and algorithms for outlier ensembles //ACM SIGKDD Explorations Newsletter. – 2015. – Т. 17. – №1. – С. 24-47.
6. Aggarwal C. C., Sathe S. Outlier Ensembles: An Introduction. – Springer, 2017.
7. Aggarwal C. C. Outlier ensembles: position paper //ACM SIGKDD Explorations Newsletter. – 2013. – Т. 14. – № 2. – С. 49-58.
8. Ester M. et al. A density-based algorithm for discovering clusters in large spatial databases with noise //Kdd. – 1996. – Т. 96. – №. 34. – С. 226-231.
9. Chandola V., Banerjee A., Kumar V. Anomaly detection for discrete sequences: A survey //IEEE Transactions on Knowledge and Data Engineering. – 2012. – Т. 24. – №5. – С. 823-839.
10. Breunig M. M. et al. LOF: identifying density-based local outliers //ACM sigmod record. – ACM.– 2000. – Т. 29. – № 2. – С. 93-104.
11. Shewhart W. A. Economic control of quality of manufactured product. – ASQ Quality Press. –1931.
12. Leys C. et al. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median //Journal of Experimental Social Psychology. – 2013. – Т. 49. – № 4. – С. 764-766.
13. Vapnik V. The nature of statistical learning theory. – Springer science & business media, 2013.
14. Liu F. T., Ting K. M., Zhou Z. H. Isolation forest //Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. – IEEE.– 2008. – С. 413-422.
15. Schubert E. et al. On evaluation of outlier rankings and outlier scores //Proceedings of the 2012 SIAM International Conference on Data Mining. – Society for Industrial and Applied Mathematics. – 2012. – С. 1047-1058.
16. Lazarevic A., Kumar V. Feature bagging for outlier detection //Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. – ACM.– 2005. – С. 157-166.
17. Zhou H., Wang P., Li H. Research on adaptive parameter determination in DBSCAN algorithm [J] //Journal of Xi'an University of Technology. – 2012. – Т. 28. – № 3. – С. 289-292.
18. Karami A., Johansson R. Choosing dbscan parameters automatically using differential evolution //International Journal of Computer Applications. – 2014. – Т. 91. – № 7.
19. Kut A., Birant D. Spatio-temporal outlier detection in large databases //CIT. Journal of computing and information technology. – 2006. – Т. 14. – № 4. – С. 291-297.
20. Yahoo! labs. Webscope dataset ydata-labeled-time-seriesanomalies- v1_0 [Online]. URL:
http://webscope.sandbox.yahoo.com/ (дата обращения 25.08.2017).