ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V.B. Melekhin, M.V. Khachumov Planning purposeful activities intellectually autonomous robot in an under defined problem environment. Part 1. Structure and application frame firmware behavior

Abstract.

In operation, using formulas conditional logic-dependent predicate model is developed for the representation of procedural knowledge of intelligent unmanned aerial vehicle without regard to a particular subject area, consisting of multiple frame firmware behavior. The proposed procedures for planning purposeful activities of unmanned aircraft in underdetermined problem environments. The scope of the evaluation the complexity of the planning of purposeful activities of Autonomous intelligent systems in underdetermined environments on the basis of a frame firmware behavior.

Keywords:

unmanned aerial vehicle, problematic environment, the planning of focused activities, the model frame firmware behavior.

PP. 73-83.

References

1. Pandey A., Parhi D.R. Multiple mobile robots navigation and obstacle avoidance using minimum rule based ANFIS network controller in the cluttered environment // International journal of Advanced Robotics and Automation, 2016, no. 1, pp. 1-11.
2. Veselov G., Sklyarov A., Sklyarov S. Synergetic approach to the quadrotor helicopter control in an environment with external disturbances // Proceedings of 2016 International Siberian Conference on Control and Communications «SIBCON-2016» (May 12-14, 2016 Russia, Moscow). 2016. DOI: 10.1109/SIBCON.2016.7491680
3. Demir B.E, Bayir R., Duran F. Real-time trajectory tracking of an unmanned aerial vehicle using a self-tuning fuzzy proportional integral derivative controller // International Journal of Micro Air Vehicles, 2016, Vol. 8(4) 252–268;
4. Zhang C., Hu H., Wang J. An adaptive neural network approach to the tracking control of micro aerial vehicles in constrained space // International Journal of Systems Science, 2017, 48 (1). pp. 84-94
5. Santoso F., Garratt M.A., Anavatti S.G. State-of-the-Art Intelligent Flight Control Systems in Unmanned Aerial Vehicles // IEEE Transactions on Automation Science and Engineering, 2017, pp. 1–15
6. Allgeuer P., Behnke S. Hierarchical and state-based architectures for robot behavior planning and control // In proceedings of 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, October 2013
7. Xavier J.A., Selvakumari S.R. Behavior architecture controller for an autonomous robot navigation in an unknown environment to perform a given task, International Journal of Physical Sciences, 2015, vol.10, pp. 182-191
8. Khachumov M.V. Controlling the motion of a group of unmanned flight vehicles in a perturbed environment based on the rules // 2017 International Siberian Conference on Control and Communications (SIBCON) (June 29-30, 2017, Astana, Kazakhstan), 2017, 5 p. – ISBN: 978-1-5090-1081-3 – URL: http://ieeexplore.ieee.org/document/7998587/
9. Filippis L.De, Guglieri G., Quagliotti F. Path planning strategies for UAVS in 3D environments // Journal of Intelligent & Robotic Systems, 2012, 65(1–4), p. 247–264
10. Kothari, M., & Postlethwaite, I. A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. Journal of Intelligent & Robotic Systems, 2103, 71(2), p. 231–253
11. Efimov E. I. Reshateli intellektual'nykh zadach [Intellectual problem Solvers task] – M.: Nauka, 1982. – 320 p.
12. Vagin V.N. Deduktivnyj vyvod na znaniyakh [Deductive inference on knowledge]. V kn. Iskusstvennyj intellekt. V 3-kh kn. Kn. 2. Metody i modeli: Spravochnik / Pod red. D.А. Pospelova.. [In the book. Artificial intelligence. In 3 vol. Kn. 2. Methods and models: Handbook / ed. by D. A. Pospelov]. – M.: Radio i svyaz [M.: Radio and communication], 1990, pp. 89 – 105.
13. Norvig P. Iskusstvennyj intellekt [Artificial intelligence]. Sovremennyj podkhod. Rukovodstvo. [A modern approach. Guide]. – M.: Dialektika / Vil'yams [M.: Dialectics / Williams], 2015. – 1408 p.
14. Kelly A. Mobile Robotics: Mathematics, Models, and Vethods. – Cambridge: Cambridge University Press, 2013. – 808 p.
15. Kober J., Peters J. Learning motor skills: from algorithms to robot experiments. – Cham: Springer, 2014. – 201 p.
16. Nilsson N. Printsipy iskusstvennogo intellekta [Principles of artificial intelligence]. – M.: Kniga po trebovaniyu [M.: Book on demand], 2012. – 369 p.
17. Lugger John. F. Iskusstvennyj intellekt: strategii i metody resheniya slozhnykh problem [Artificial intelligence: strategies and methods for solving complex problems]. 4-e Izd. – M.: Williams, 2005. – 863 p.
18. Kilani Y., Bsoul M., A. Alsarhan A., Al-Khasawneh A. A Survey of the Satisfiability-Problems Solving Algorithms. // Intern. J. Advanced Intelligence Paradigms. 2013. №.3, V.5, pp. 233 –256.
19. Vagin V.N., Derevyanko, A.V., Kutepov V.P. Аlgoritmy parallel'nogo logicheskogo vyvoda i issledovanie ikh ehffektivnosti na komp'yuternykh sistemakh [Parallel Algorithms for logical deduction and study of their effectiveness on computer systems] // // Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision-making], 2017, № 1, pp. 3-9.
20. Sorokin D. E. Metodologicheskie aspekty iskusstvennogo intellekta [Methodological aspects of artificial intelligence]. – M.: Mashinostroenie, 2014. – 262 p.
21. Osipov G. S. Lektsii po iskusstvennomu intellektu [Lectures on artificial intelligence]. . – M.: Liberkom [M.: Liberkom], 2014. – 272 p.
22. Bershtein L. S., Melekhin V. B. Planirovanie povedeniya intellektual'nogo robota [Planning of intelligent robot behavior]. – M.: Energoatomizdat, 1994. – 240 p.
23. Rudkovskaya D., Pilinski M. Rudkovsky L. Nejronnye seti, geneticheskie algoritmy i nechetkie sistemy [Neural networks, genetic algorithms and fuzzy systems] / 2-e. izd. – M.: Goryachaya liniya – Telekom [2nd. ed. – M.: Hot line – Telecom], 2013. – 384 p.
24. Varlamov O.O., Lazarev V.M., Chumikov D.A., Poon D.O perspektivakh sozdaniya avtonomnykh intellektual'nykh robotov na osnove mivarnykh tekhnologij [About the prospects of creating Autonomous intelligent robots, based on mivar technologies] // Radiopromyshlennost' [The radio industry]. 2016, No. 4, pp. 96-105.
25. Abrosimov V.K. Kollektivy intellektual'nykh letatel'nykh apparatov [Groups of intelligent aircraft]t. – M.: Nauka, 2017. – 304 p.
26. Bershtein L.S., Melekhin V.B. Struktura protsedurnogo predstavleniya znanij integral'nogo robota. 1. Frejm mikroprogrammy povedeniya [The Structure of a procedural knowledge representation of the integral of the robot. 1. Frame firmware behavior], // Izv. АN SSSR. Tekhn. Kibernetika [Izv. USSR academy of sciences. Tech. Cybernetics], 1988, № 5, pp. 190-194.
27. Bershtein L.S., Melekhin V.B. Struktura protsedurnogo predstavleniya znanij integral'nogo robota. 1. Rasplyvchatye semanticheskie seti [The Structure of a procedural knowledge representation of the integral of the robot. 1. Vague semantic networks] // // Izv. АN SSSR. Tekhn. Kibernetika [Izv. USSR academy of sciences. Tech. Cybernetics]. 1988, № 6, pp. 119-124.
28. Melekhin V.B. Logika uslovno-zavisimykh rassuzhdenij: predstavlenie znanij i pravila vyvoda umozaklyuchenij [The Logic
of conditionally-dependent reasoning: knowledge representation and inference rules reasoning] // Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision-making], 2016, No. 1, pp. 65-74.
29. Alferov Z.V. Teoriya algoritmov [The Theory of algorithms]. – M.: Statistika [M: Statistics], 1973. – 137 p.