ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V.D. Noghin Multicriteria choice over the fuzzy set as a problem of compromise search

Abstract.

The problem of multicriteria optimization on a fuzzy set, which is specified by its membership function, is considered. A two-step approach is proposed to solve this problem. One consists in finding a compromise between the available criteria and the membership function. At the first stage, a new vector criterion is formed, which is obtained by adding a membership function to a set of initial criteria, and information
about the importance of criteria in the form of information quanta for the Pareto set reduction is used. If the set obtained after such reduction is not appropriate as the final solution of the multicriteria optimization problem, then in the second stage we use scalarization, realizing the idea of goal programming.

Keywords:

fuzzy set, multicriteria choice, reduction of the Pareto set, quanta of fuzzy information.

PP. 91-99.

DOI 10.14357/20718594180319

References

1. Zadeh L.A., Bellman R.E. Decision-Making in a Fuzzy Environment // Management Science, 1970, vol. 17, pp. 141-164.
2. Negoita C.V., Ralesku D.A. Applications of Fuzzy Sets to Systems Analysis. Basel, Birkhausner Verlag, 1975.
3. Orlovsky S.A., On Programming with Fuzzy Constraint Sets // Kybernetes, 1977, vol. 1, pp. 197-201.
4. Orlovskij S.A. Problemy prinyatiya reshenij pri nechetkoj iskhodnoj informacii. M. Nauka. 1981.
5. Kacprzyk J., Orlovski S.A., Fuzzy Optimization and Mathematical Programming: A Brief Introduction and Survey, in Optimization Models Using Fuzzy Sets and Possibility Theory, Reidel, D. Publishing Company, 1987, pp. 50-72.
6. Tang J., Wang D. and Fung R.Y.K. Understanding of Fuzzy Optimization: Theories and Methods // Journal of Systems Science and Complexity, 2004, vol. 17, No 1.
7. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments (Kahraman, C., ed.), Springer. 2008.
8. Luhandjula M.K. Fuzzy Optimization: Milestones and Perspectives // Fuzzy Sets and Systems, 2015, vol. 74, pp. 4–11.
9. Noghin V.D. Pareto Set Reduction: an Axiomatic Аpproach. Springer Inc., 2018.
10. Noghin V.D. Approximation of Convex Fuzzy Sets. In Proc. of Intern. Conf. Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, pp. 127-129. Интернет-ресурс: https://ieeexplore.ieee.org/document/7973994/
11. Podinovskiy V.V., Nogin V.D. Pareto-optimal'nye resheniya mnogokriterial'nikh zadach (2-e izd., ispr. i dop.). M. Fizmatlit. 2007.
12. Noghin V.D. Pareto Set Reduction Based on Some Metrics // Computational Mathematics and Mathematical Physics, 2017, vol. 57(4), pp. 645-652.