ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

V.K. Ivanov, N.V. Vinogradova, B.V. Palyukh, A.N. Sotnikov Current Trends and Applications of Dempster-Shafer Theory (Review)


The article provides a review of the publications on the current trends and developments in Dempster-Shafer theory and its different applications in science, engineering, and technologies. The review took account of the following provisions with a focus on some specific aspects of the theory. Firstly, the article considers the research directions whose results are known not only in scientific and academic community but understood by a wide circle of potential designers and developers of advanced engineering solutions and technologies. Secondly, the article shows the theory applications in some important areas of human activity such as manufacturing systems, diagnostics of technological processes, materials and products, building and construction, product quality control, economic and social systems. The particular attention is paid to the current state of research in the domains under consideration and, thus, the papers published, as a rule, in recent years and presenting the achievements of modern research on Dempster-Shafer theory and its application are selected and analyzed.


probability, evidence combination, conflict simulation, decision-making, the theory of evidence, a plausibility degree, Dempster-Shafer theory, a belief function, uncertainty accounting.

PP. 32-42.

DOI 10.14357/20718594180403


1. Dempster A. 1967. Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics 38(2):325–339.
2. Shafer G. 1976. A Mathematical Theory of Evidence, Princeton University Press, 1976.
3. Palyukh B.V., Vetrov A.N., Egereva I.A. 2017. Architecture of an intelligent optimal control system for multi-stage processes evolution in a fuzzy dynamic environment [Software & Systems]. 4:619-624.
4. Yager R., Liping Liu. 2010. Classic Works of the Dempster-Shafer Theory of Belief Functions, London: Springer.
5. Vejnarová J., Kratochvíl V. 2016. Belief Functions: Theory and Applications. 4th International Conference, (Czech Republic, Prague, September 21-23, 2016). Prague: Springer International Publishing.
6. Cuzzolin F. 2016. Random sets for the working scientist. In IJCAI Tutorial, UK, Oxford Brookes University. Available at: (accessed date 15.06.2017).
7. Reineking T. 2014. Belief Functions: Theory and Algorithms (PhD Thesis), University of Bremen.
8. Lepskij A. 2014. Obshhie shemy pravil kombinirovanija tel svidetel'stv i aposteriornye harakteristiki kachestva kombinirovanija [General Schemes of Combining Rules and A Posteriori Quality Characteristics of Combining]. Nechetkie sistemy i mjagkie vychislenija 9(2):93-114.
9. Shafer G. 2011. A betting interpretation for probabilities and Dempster–Shafer degrees of belief. International Journal of Approximate Reasoning 52(2):127-136.
10. Martin R., Zhang J., Liu C. 2010. Dempster–Shafer Theory and Statistical Inference with Weak Beliefs. Statistical Science. 25(1):72–87.
11. Kłopotek, M., Wierzchori S. 2002. Empirical Models for the Dempster-Shafer-Theory. Belief Functions in Business Decisions (eds. R. Srivastava et al.), Berlin, Heidelberg: Springer-Verlag. 62-112.
12. Vourdas A. 2015. Non-additive probabilities and quantum logic infinite quantum systems. 30th International Colloquium on Group Theoretical Methods in Physics (Group30). 1-7.
13. Jirousek R., Shenoy P. (2016) Entropy of Belief Functionsinthe Dempster-Shafer Theory: A New Perspective. Belief Functions: Theory and Applications, Switzerland, Springer, 1-11.
14. Herencia J., Lamata M. 2008. A generalization of entropy using dempster-shafer theory. International Journal of General Systems. 29(5):719-735.
15. Wang J., Xiao F., Deng X., Fei L., Deng Y. 2016. Weighted Evidence Combination Based on Distance of Evidence and Entropy Function. International Journal of Distributed Sensor Networks. 12:1-10.
16. Wang R. 2014. Analysis and Improvement of Combination Rule in D-S Theory. Applied Mechanics and Materials. 556-562: 3930-3934.
17. Yager R. 1987. On the Dempster-Shafer Framework and New Combination Rules [Information Sciences] 41:93-137.
18. Campos F. 2005. Decision Making in Uncertain Situations An Extension to the Mathematical Theory of Evidence, USA, Florida, Boca Raton, 2005.
19. Lepskij A. 2013. Ob ocenivanii konflikta i umen'shenija neznanija v teorii Dempstera-Shejfera [Estimation of Conflict and Decreasing of Ignorance in Dempster-Shafer Theory]. Integrirovannye modeli i mjagkie vychislenija v iskusstvennom intellekte: cbornik nauchnyh trudov VII mezhdunarodnoj konferencii (Kolomna, Rossija, 20-22 maja 2013), Moskva: Fizmatlit. 1:436-448.
20. Deng Y. 2015. Generalized Evidence Theory. Applied Intelligence. 43 (3): 530-543.
21. Hájek P. 1992. Systems of conditional beliefs in dempster-shafer theory and expert systems. International Journal of General Systems. 20(2):137-142.
22. Xue D., Wang Y. 2017. Applying Cosine Similarity to Discount Evidence. 10th International Symposium on Computational Intelligence and Design (ISCID 2017). Hangzhou, China. 9-10 Dec. 2017.
23. Bellenge I., Gatepaille S., Abdulrab H., Cassidian An. 2011. An Evidential Approach for Modeling and Reasoning on Uncertainty. Proceedings of the 7th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2011), collocated with the 10th International Semantic Web Conference (ISWC 2011) (Bonn, Germany, October 23, 2011). 27-38.
24. Bellenger A., Gatepaille S. 2010. Uncertainty in Ontologies: Dempster-Shafer Theory for Data Fusion Applications. Paper presented Workshop on the Theory of Belief Functions. Brest – France.
25. A Python library for performing calculations in the Dempster-Shafer theory of evidence. Available at: (accessed date 15.06.2017)
26. Ballal P., Lewis F. 2009. Condition-based maintenance using dynamic decisions by Petri nets and Dempster-Shafer theory: a matrix-based approach. Transactions of the Institute of Measurement and Control. 31(3-4).
27. Simanova N. 2008. (PhD Thesis) Metody mnogokriterial'nogo prinjatija reshenij v proizvodstvennyh sistemah pri netochnyh ocenkah, Sankt-Peterburg: Sankt-Peterburgskaja gosudarstvennaja lesotehnicheskaja akademija im. S.M. Kirova.
28. Gonzalez E. L., Desforges X., Archimède B. 2017. Towards a generic prognostic function of technical multi-component systems taking into account the uncertainties of the predictions of their components. 4th International Conference on Control, Decision and Information Technologies (CoDIT). 5-7 April 2017. Barcelona, Spain.
29. Yamada K., Miura J. 2016 Ambiguity-driven Interaction in Robot-to-Human Teaching [HAI '16 Proceedings of the Fourth International Conference on Human Agent Interaction. (4-7 October 2016)] Biopolis, Singapore. 257-260.
30. He Z., Jiang W. 2017. Quantum Mechanical Approach to Modeling Reliability of Sensor Reports. IEEE Sensors Letters 1(4). Aug. 2017.
31. Kovalenko I., Shved A., Pugachenko E. 2014. Analiz pravil kombinirovanija gruppovyh jekspertnyh ocenok v konfliktnyh situacijah. [Analysis of the group expert assessments combining rules in conflict situations]. Problemy informacionnyj tehnologij. 15:14-20.
32. Bree R. Mathon, Metin M. Ozbek, George F. Pinder. 2010. Dempster–Shafer Theory Applied to Uncertainty Surrounding Permeability. Mathematical Geosciences 42(3):293–307.
33. Pongsathornwiwat N., Huynh V.-N., Theeramunkong T. 2015. A hybrid approach for linguistic information integration to multi-experts multi-attribute decision-making problem. Asian Conference on Defence Technology (ACDT). 23-25 April 2015. Hua Hin, Thailand.
34. Arévalo F., Nguyen T., Schwung A. 2017. Assistance system for a bulk good system based on information fusion. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 12-15 Sept. 2017. Limassol, Cyprus.
35. Horst C. (eds.). 2013. Handbook of Technical Diagnostics. Berlin, Heidelberg: Springer-Verlag.
36. Gros X. (eds.). 2001. Applications of NDT Data Fusion, Boston, Dordrecht, London: Kluwer Academic Publishers.
37. Kuperman V., Paljuh B. 1995. Korrektirovka bazy znanij dlja raboty jekspertnoj sistemy tehnicheskoj diagnostiki himicheskogo proizvodstva [Knowledge Base Сorrection for The Expert System of Chemical Production Technical Diagnostics]. Programmnye produkty i sistemy 3:25-29.
38. Perov V., Paljuh B., Kuperman V. 1993. Defective chemical process chain detection in uncertainty condition. Computers & Chemical Engineering 17(10):1015-1024.
39. Jiang H., Lianga Z., Gao J., Dang C. 2016. Classification of weld defect based on information fusion technology for radiographic testing system. Review of Scientific Instruments 87, 035110 (2016).
40. Li G., Huang P., Chen P., Hou D., Zhang G., Zhou Z. 2011. Application of multi-sensor data fusion in defects evaluation based on Dempster-Shafer theory. Proceedings of the Instrumentation and Measurement Technology Conference (I2MTC) (China, Binjiang, 10-12 May, 2011). Binjiang: IEEE. 1-5.
41. Aminravan F., Rehan Sadiq, Hoorfar M., Rodriguez M., Francisque A., Homayoun Najjaran. 2011. Evidential reasoning using extended fuzzy Dempster–Shafer theory for handling various facets of information deficiency. International Journal of Intelligent Systems 26(8):731-758.
42. Wen X., Hou D., Feng T., Huang P., Zhang G. 2016. Online quantitative analysis of accidental contaminant in water distribution system based on Dempster-Shafer evidence theory. IEEE International Instrumentation and Measurement Technology Conference Proceedings. 23-26 May 2016. Taipei, Taiwan.
43. Wang F., Wang D. (2011) Application of mechanical fault diagnosis of circuit breaker on evidence theory method. Proceedings of the Computer Science and Service System (CSSS): International Conference on (China, Nanjing, 27-29 June, 2011, IEEE. 246-249.
44. Basir, O., Yuan, X.H. 2007. Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Information Fusion October 2007 8(4):379-386.
45. Yang B., Kim K.J. 2006. Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mechanical Systems and Signal Processing 20(2):403–420.
46. Fang H., Chakrabarty K., Wang Z., Gu X. 2012. Diagnosis of Board-Level Functional Failures Under Uncertainty Using Dempster–Shafer Theory [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems] 31(10):1586-1599.
47. Popov M., Topol'nickij M. 2014. Klassifikacija ob'эektov na mnogospektral'nyh/giperspektral'nyh ajerokosmicheskih izobrazhenijah na osnove teorii svidetel'stv Dempstera-Shafera [Classification of objects on multispectral/hyperspectral aerospace images on the basis of Dempster-Schafer theory of evidence]. Matematicheskie mashiny i sistemy. 1:58-69.
48. Chen X., Li J., Zhang Y., Tao L. 2016. Сhange detection with multi-source defective remote sensing images based on evidential fusion. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress (Czech Republic, Prague, 12–19 July, 2016) III-7:125-132.
49. Deng X, Hu Y., Deng Y. 2014. Bridge Condition Assessment Using D Numbers. The Scientific World Journal, vol. 2014 (2014), Article ID 358057, 11 p.
50. Utkin V., Kaberova A., Solovyev S. 2016. Reliability Analysis of Soil Bases According to the Deformation Criterion. International Journal for Computational Civil and Structural Engineering. 12(4):18-26.
51. Utkin V., Solov'ev S. 2016. Raschet nadezhnosti zhelezobetonnoj balki na stadii jekspluatacii po kriteriju dliny treshhiny v betone [Calculation of Reinforced Concrete Beam Reliability on Operation Stage by Crack Length Criterion]. Vestnik MGSU. 1:68-79.
52. Daher S. 2015. Defect-based Condition Assessment Model and Protocol of Sewer Pipelines (PhD Thesis). Montreal (Canada): Concordia University.