ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

A.O. Shevlyakov, M.G. Matveev Algebra of trapezoidal fuzzy numbers for fuzzy information processing


Existing approaches to the implementation of fuzzy calculations have several significant problems that restrain practical applications of the fuzzy sets theory to the solutions of many control and decisionmaking tasks. In our previous research, we proposed the algebra of double component numbers that solves the aforementioned problems for fuzzy triangular numbers. In this paper, we extend the algebra of double component numbers to the trapezoidal fuzzy numbers, explore its properties and compare it with other approaches.


fuzzy algebraic structure, fuzzy arithmetic, trapezoidal fuzzy numbers.

PP. 53-60.

DOI 10.14357/20718594180405


1. Zadeh L.A. 1975. The concept of a linguistic variable and its application to approximate reasoning, Parts 1, 2, 3. Information Sciences. 8:43–80,199–249,301–357.
2. Zadeh L.A. 1965. Fuzzy sets. Fuzzy sets Information and Control. 8(3):338–353.
3. Zadeh L.A. 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems. 1:3-28.
4. Dubois D, Prade H. 1978. Operations on fuzzy numbers. International Journal of Systems Science. 9(6):613–626.
5. Klir G.J. 1997. Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Systems. 91:165–175.
6. Lodwick W.A. 1999. Constrained interval arithmetic. CCM report. 138:1-11.
7. Piegat A. 2001. Fuzzy Modeling and Control. Springer-Verlag. 728 p.
8. Nagoor Gani A., Mohamed Assarudeen S.N. 2012. A New Operation on Triangular Fuzzy Number for Solving Fuzzy Linear
Programming Problem. Applied Mathematical Sciences. 11:525–532.
9. Chalco-Cano Y., Lodwick W.A., Bede B. 2014. Single level constraint interval arithmetic. Fuzzy Sets and Systems. 257:146–168.
10. Vorontsov Y.A., Matveev M.G. 2014. Algebraicheskie operacii s nechetkimi LR-chislami s ispol'zovaniem preobrazovanija L [L-transform Based Algebraic Operations on fuzzy LR-numbers]. Programmnaja inzhenerija [Software Engineering]. 8:23-29.
11. Piegat A. 2005. A new definion of the fuzzy set. International Journal of Applied Mathematics and Computer Science. 15(1):125–140.
12. Stefanini L., Guerra M.L. 2006. On fuzzy arithmetic operations: some properties and distributive approximations. International Journal of Applied Mathematics. 19:171–199.
13. Gao S., Zhang Z., Cao C. 2009. Multiplication operation on fuzzy numbers. Journal of Software. 4(4):331–338.
14. Taleshian A., Rezvani S. 2011. Multiplication operation on trapezoidal fuzzy numbers. Journal of Physical Science. 11:17–26.
15. Deschrijver G. 2007. Arithmetic operators in interval-valued fuzzy set theory. Information Sciences. 177:2906–2924.
16. Shevlyakov A.O. 2017. Algebraicheskie operacii s nechetkimi treugol'nymi chislami s ispol'zovaniem algebry dvuhkomponentnyh chisel [Algebraic Operations On Triangular Fuzzy Numbers Using The Algebra Of Double Component Numbers]. Vestnik Voronezhskogo gosudarstvennogo universiteta, serija "Sistemnyj analiz i informacionnye tehnologii" [Scientific journal Proceedings of Voronezh State University. Ser. Systems Analysis and Information Technologies]. 1:149-153.
17. Matveev M. G., Shevlyakov A. O., Semenov M. E., Meleshenko P. A. 2017. Solution of selection problems with fuzzy parameters. 17-th International Multidisciplinary Scientific Geoconference SGEM, Conference proceedings. 17:595-603.
18. Shevlyakov A.O., Matveev M.G. 2018. W-algebra for solving problems with fuzzy parameters. Journal of Physics: Conf. Series. 973. 012044.
19. Shevlyakov A.O., Matveev M.G. 2017. Sravnenie razlichnyh nechetkih arifmetik [A comparison of different fuzzy arithmetics]. Sravnenie razlichnyh nechetkih arifmetik [Artificial Intelligence and Decision Making]. 4:60-68.
20. Matveev M.G. 2015. Analiz i reshenie zadach vybora s parametricheskoj nechetkost'ju [Analyzing and Solving Problems of Decision Making with Parametric Fuzzy]. Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta, serija "matematicheskoe modelirovanie i programmirovanie" [Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software]. 8(4):14-29.
21. Ban A. 2008. Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval. Fuzzy Sets and Systems. 159(11):1327-1344.
22. Abbasbandy S., Hajjari T. 2010. Weighted trapezoidal approximation-preserving cores of a fuzzy number. Computers & Mathematics with Applications. 59(9):3066-3077.
23. Ban A.I., Coroianu L. 2012. Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity. International Journal of Approximate Reasoning. 53(5):805-836.
24. Abbasbandy S., Asady B. 2004. The nearest trapezoidal fuzzy number to a fuzzy quantity. Applied mathematics and computation. 156(2):381-386.
25. Ban A., Coroianu L., Grzegorzewski P. 2011. Trapezoidal approximation and aggregation. Fuzzy Sets and Systems. 177(1):45-59.
26. Yeh C.T. 2008. Trapezoidal and triangular approximations preserving the expected interval. Fuzzy Sets and Systems. 159(11):1345-1353.
27. Grzegorzewski P., Mrowka E. 2005. Trapezoidal approximations of fuzzy numbers. Fuzzy Sets and Systems. 153(1):115-135.
28. Abbasbandy S., Amirfakhrian M. 2006. The nearest trapezoidal form of a generalized left right fuzzy number. International Journal of Approximate Reasoning. 43(2):166-178.
29. Coroianu L. 2011. Best Lipschitz constant of the trapezoidal approximation operator preserving the expected interval. Fuzzy Sets and Systems. 165(1):81-97.
30. Grzegorzewski P. 2008. Trapezoidal approximations of fuzzy numbers preserving the expected interval - algorithms and properties. Fuzzy Sets and Systems. 159(11):1354-1364.