ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

V.I. Gorodetsky, O.N. Tushkanova Semantic technologies for semantic applications. Part 1. Basic components of semantic technologies


The paper discusses the basic aspects of modern understanding of semantic computations, semantic technologies and semantic applications in the field of artificial intelligence. The basic terminology used in the work is introduced, and concrete examples of semantic applications, including the industrial ones, are given. It is shown that the basic components of semantic technologies are ontologies and their semantic models, semantic resources and semantic component. The semantic resources contain knowledges about word semantics and means for refinement of this semantics. The semantic component of the technology is used to formally describe the meaning of NL-entities and numerically evaluate their pairwise semantic similarity. The available semantic resources are discussed and their comparative analysis is given. Information is given on the types of NL-entities (primitives), which are then practically used to build models of text meaning formal description in various semantic applications. The last components of the text semantics description constitute the content of the second part of this paper.


natural language semantics, semantic technology, semantic computing, semantic application, ontology, semantic resource.

PP. 61-71.

DOI 10.14357/20718594180406


1. Bartussek W., Bense H., Hoppe T., Humm B.G., Reibold A., Schade U., Siegel M., Walsh P. Introduction to Semantic Applications. In Thomas Hoppe, Bernhard Humm, Anatol Reibold (Eds.). Semantic Applications. Methodology, Technology, Corporate Use. Springer-Verlag GmbH Germany, part of Springer Nature 2018.
2. Gruber T.R. A translation approach to portable ontologies. Knowledge Acquisition. Academic Press, 1993, 5(2), pp. 199-220.
3. Uciteli A., Goller C., Burek P., Siemoleit S., Faria B., Galanzina H., Weiland T., Drechsler-Hake D., Bartussek W., Herre H. Search ontology, a new approach towards semantic search. In: Plödereder E, Grunske L, Schneider E, Ull D. (eds) FoRESEE: Future Search Engines, 2014, 44. Annual meeting of the GI, Stuttgart – GI edition proceedings LNI. Köllen, Bonn, pp. 667-672.
4. Beger C, Uciteli A., Herre H. Light-weighted automatic import of standardized ontologies into the content management system Drupal. Stud Health Technol Inform 243, 2017, pp. 170-174.
5. Diwisch K., Engel F., Watkins J., Hemmje M. Managing Cultural Assets: Challenges for Implementing Typical Cultural Heritage Archive’s Usage Scenarios. In: Hoppe T., Humm B., Reibold A. (eds) Semantic Applications. Springer Vieweg, Berlin, Heidelberg, 2018, pp. 219-229.
6. Bollegala D., Yutaka Matsuo Y., Ishizuka M. WebSim: A Web-based Semantic Similarity Measure. The 21st Annual Conference of the Japanese Society for Artificial Intelligence, 2007, pp. 1-4.
7. Humm B.G., Ossanloo H. A semantic search engine for software components. IADIS Press, Mannheim, 2016, pp. 127–135.
8. Fillies C., Weichhardt F., Straub H. The Semantic Process Filter Bubble. In: Hoppe T., Humm B., Reibold A. (eds) Semantic Applications. Springer Vieweg, Berlin, Heidelberg, 2018, pp. 231-241.
9. Feng Y., Bagheri E., Ensan F., Jovanovic J. The state of the art in semantic relatedness: a framework for comparison. Knowledge Engineering Review, 2017, pp. 1-30.
10. Miller A., R. Beckwith R., Fellbaum C.D., Gross D., Miller K. WordNet: An online lexical database. International Journal Lexicograph. 1990, 3, pp. 235-244.
11. Europe WordNet.
12. Azarova I.V., Mitrophanova O.A., Sinopolnikova A.A. Komp'yuternyy tezaurus russkogo yazyka tipa WordNet [WordNetlike computer thesaurus for Russian] papers/RussNet_dialog2003.pdf
13. Sukhonogov A.M., Yablonsky S.A. Razrabotka russkogo WordNet [Russian WordNet development].
14. Gupta A., Oates T. Using Ontologies and the Web to Learn Lexical Semantics. Proceedings of the 20th international joint conference on Artificial intelligence, January 06-12, 2007, Hyderabad, India, pp. 1618-1623.
15. Parkhomenko P.A., Grigor'yev A.A., Astrakhantsev N.A. Obzor i eksperimental'noye sravneniye metodov klasterizatsii tekstov [Review and experimental comparison of methods of text clustering]. Trudy ISP RAN [ISP RAS Proceddings]. 2017, 29 (2), pp. 161-200.
16. Slonim N., Friedman N., Tishbyi N. Document Clustering Using Word Clusters via the Information Bottleneck Method. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM. 2000, pp. 208-215.
17. Astrakhantsev N.A. Metody i programmnyye sredstva izvlecheniya terminov iz kollektsii tekstovykh dokumentov predmetnoy oblasti [Methods and software for extracting terms from the collection of text documents of the domain]. PhD thesis. ISA RAN, Moscow, 2014.
18. Kosa V., Chaves-Fraga D., Naumenko D., Yuschenko E., Badenes-Olmedo C., Ermolayev V., and Birukou A. Cross-Evaluation of Automated Term Extraction Tools. Technical Report TS-RTDC-TR-2017-1, 30.09.2017, Dept of Comp. Science, Zaporizhzhia National University, Ukraine, 61 p.
19. Deerwester S., Dumais S.T., Furnas G.W. et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, vol. 41, issue 6, 1990, pp. 391-407.
20. Morris J., Hirst G. Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Computational Linguistics, 1991, vol. 17, 1, pp. 21–43.
21. Tkach S.S. Primeneniye leksicheskikh tsepochek dlya razresheniya leksicheskoy mnogoznachnosti na osnove Russkogo Viki-slovarya [Application of lexical chains for solving lexical polysemy based on the Russian Wiki Dictionary]. Master’s thesis. Petrozavodsk State University, Petrozavodsk, 2016, 60 p.
22. Wei T., Lu Y., Chang H., Zhou Q., Bao X. A semantic approach for text clustering using WordNet and lexical chains. Expert Systems with Applications 2015, 42, pp. 2264-2275.