ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

G. I. Shepelev Comparing poly-interval alternatives: “mean-risk” method

Abstract.

For poly-interval objects, such as generalized interval estimations and fuzzy values, are proposed methods to calculate numerical characteristics, which are similar to characteristics of distribution functions of probability theory (mathematical expectation, variance, average semideviation). The methods are based on the defuzzification of interval estimates of the indicated numerical characteristics in the case of fuzzy poly-interval objects and on the representation of generalized interval estimations as a probability mixture of distributions forming such generalized estimations. These results allow extend the well-known “mean-risk” method, which is usually used for comparing mono-interval values on their preference and risk, to the case of poly-interval estimations.

Keywords:

comparing poly-interval alternatives, “mean-risk” method, generalized interval estimations, numerical characteristics of fuzzy poly-interval values.

PP. 16-26.

DOI 10.14357/20718594190102

References

1. Szegö G. Measures of risk // J. Banking&Finance. 2002. V. 26(7). P. 1253–1272.
2. Loktionov V. 2013. Svoistvo adaptatsii kak kritery effektivnosti investitsionnykh proektov v toplivnoenergeticheskom komplekse [Adaptation property as performance criterion for investment projects in the fuel and energy complex] // Ekonomichesky analiz: teoriya i praktika [Economic analysis: theory and practice] 6(309): 45–50.
3. Shepelyov G., Sternin M. Methods for comparison of alternatives described by interval estimations// International Journal of Business Continuity and Risk Management. 2011. V. 2. Issue 1. P.56–69.
4. Sternin M., Shepelev G. 2015. Otsenka riska v sovokupnosti intervalnykh alternativ [Risk estimating in interval alternatives set] // Iskusstvenny intellekt i prinyatie resheny [Artificial intelligence and decision-making] 3: 83–91.
5. Shepelev G. Decision-making in groups of interval alternatives // International journal “Information theories and applications”. 2016. V. 23. Issue 4. P. 303–320.
6. Fishburn P.C. Mean-risk analysis with risk associated with below-target returns // American Economic Review. 1977. V. 67. P. 116–126.
7. Podinovsky V. 2015. Chislovye mery riska kak kriterii vybora pri veroyatnostnoi neopredelennosti [Numerical risk measures as selection criteria for probabilistic uncertainty] //Iskusstvenny intellekt i prinyatie resheny [Artificial intelligence and decision-making] 2: 60–74.
8. Ogryczak W, Ruszczyński A. From stochastic dominance to mean-risk models: semideviations as risk measures // European journal of operational research. 1999. V. 116. P. 33–50.
9. Shepelev G.I., Morozova N.V. 2018. Multimethod approach to comparing of interval alternatives // Trudy 12-oi Mezhdunarodnoi shkoly-simposiuma “Analiz, modelirovanie, upravlenie, razvitie” (AMUR-2018) [The 12th InternationalSchool-Symposium "Analysis, Modeling, Management, Development" (AMUR-2018)]. Simpheropol. P. 502 – 507.
10. Roy A.D. Safety first and the holding of assets // Econometrica. 1952. V. 20(3). P. 431–449.
11. Bawa V. S. Optimal Rules For Ordering Uncertain Prospects // Journal of Financial Economics. 1975. V 2(1). P. 95–121.
12. Sortino F.A., Meer R.V. Downside Risk // Journal of Portfolio Management. 1991. V. 17(4). P. 27–31.
13. Nawrocki D. A Brief History of Downside Risk Measures // The Journal of Investing. 1999. V. 8(3). P. 9–25.
14. Grechuk B., Molyboha A., Zabarankin M. Mean-deviation analysis in the theory of choice // Risk analysis. 2012. V. 32. P. 1277–1292.
15. Shepelev G., Zhiyanov V. Kompleksnyi metod sravneniya alternativ v usloviyakh riska [Comprehensive method for comparing interval alternatives under risk] //Vestnik TSEMI [Herald of CEMI]. 2018. Issue 3 [Electronic resource]. Access for registered users. URL: http://cemi.jes.su/s111111110000061-0-1 (circulation date: 15.01.2019).
16. Orlovsky S. Problemy prinyatiya resheny pri nechetkoi iskhodnoi informarsii. 1981. [Decision making problems with fuzzy source information]. Moscow: Nauka. 208 p.
17. Chugunov N., Shepelyov G., Sternin M. The generalized interval estimations in decision making under uncertainty // International Journal of Technology, Policy and Management. 2008. V. 8. Issue 3. P. 298–321.
18. Sternin M., Shepelev G. Generalized interval expert estimates in decision making // Doklady Mathematics. 2010. V. 81. Issue 3. P. 485–486.
19. Sternin M., Shepelev G. 2008. Analiz stsenariev v metode obobshchennykh intervalnykh otsenok [Scenario analysis in the method of generalized interval estimates] //Tavrichesky vestnik informatiki i matematiki [Tavrichesky bulletin of computer science and mathematics]. 2: 195–201.
20. Sternin M., Chugunov N., Shepelev G. 2005. Uchet neopredelennosti ekspertnykh znany: sintez intervalnogo i veroyatnostnogo podkhodov [The uncertainty of expert knowledge: the synthesis of interval and probabilistic approaches] // Informatsionnye tekhnologii i vychislitelnye sistemy [Information technology and computing systems]. 4: 36–46.
21. Sternin M., Shepelev G., Shepelev N. 2007. Svoistva obobshchennogo ravnomernogo raspredeleniya veroyatnostei [Properties of the generalized uniform probability distribution] // Trudy 2-oi Mezhdunarodnoi konferentsii “Sistemny analiz i informatsionnye tekhnologii” [2-nd International Conference "System Analysis and Information Technologies" (SAIT-2007)]. Moscow. V.1. P. 239-242.
22. Dubois D., Prade H. 1988. Theorie des possibilites. Paris: Masson. 288 p.
23. Khurgin Ya. 2000. Chetkie i nechetkie algebraicheskie srednie i ikh ispolzovanie [Clear and fuzzy algebraic means and their using] //Zavodskaya laboratoriya. Diagnostika materialov. [Factory laboratory. Diagnostics of materials] 66(1): 64–66.
24. Larichev O., Petrovsky A. 1987. Sistemy podderzhki prinyatiya resheny. Sovremennoe sostoyanie i perspektivy razvitiya [Decision support systems. State of art and development prospects] //Itogi nauki. Tekhnicheskaya kibernetika [Results of science. Technical cybernetics]. Moscow. VINITI 21: 131–164.
25. Diligensky N., Dymova N., Sevastiyanov P. 2004. Nechetkoe modelirovanie i mnogokriterialnaya optimizatsiya proizvodstvennykh system v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya [Fuzzy modeling and multi-criteria optimization of production systems under uncertainty: technology, economy, ecology]. Moscow: Engineering-1 Publs. 397 p.
26. Shepelev G. Risk behaviour in a set of interval alternatives //International Journal ”Information models and analyses”. 2015. V. 4. P. 303–323.