ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V. D. Noghin Multicriteria choice based on fuzzy information

Abstract.

The paper proposes a new method for solving the problem of multicriteria optimization of a numerical vector function on a fuzzy set. The membership function of a fuzzy feasible set is joined to the original set of criteria that allows the original problem of multi-criteria optimization to be treated as the task of finding a suitable compromise (Pareto-optimal) solution for an extended set of criteria. Itis assumed that to search for the “best” compromise solution there is only fuzzy information about the preferences of decision maker in the form of information quanta. At the first stage of the proposed method, the search for a compromise is made on the basis of an axiomatic approach, with the help of which the Pareto set is reduced. The result of the reduction is a fuzzy set with the membership function, which is determined on the basis of the used fuzzy information. At the second stage, the obtained membership function is added to the extended set of criteria, after which the scalarization procedure realizing the idea of goal programming is used to solve the formed multicriteria problem.

Keywords:

fuzzy set, multicriteria optimization, multicriteria choice, reduction of the Pareto set, quanta of fuzzy information, scalarization, goal programming.

PP. 50-61.

DOI 10.14357/20718594190205

References

1. Zadeh L.A., Bellman R.E. Decision-Making in a Fuzzy Environment//Management Science, 1970, vol. 17, pp. 141-164.
2. Negoita C.V., Minou S., Stan E. On Considering Imprecision in Dynamic Linear Programming //ECEESR, 1976, № 3, pp. 83-95.
3. Negoita C.V., Ralesku D.A. Application on fuzzy sets to systems analysis. Basel. Birkhauser Verlag, 1975.
4. Negoita C.V., Sularia M. On Fuzzy Mathematical Programming and Tolerances in Planning//ECEESR, 1976, № 1, pp. 3-14.
5. Zimmermann H.-J. Fuzzy Programming with Several Objectives Functions//Fuzzy sets and systems, 1978, vol. 1, pp. 46-55.
6. Hamacher H., Leberling H., Zimmermann H.-J. Sensitivity Analysis in Fuzzy Linear Programming//Fuzzy sets and systems, 1978, vol. 1, pp. 269-281.
7. Tang J., Wang D., Fung R.Y.K. Understanding of Fuzzy Optimization: Theories and Methods // Journal of Systems Science and Complexity, 2004, vol. 17, No 1.
8. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments (Kahraman, C., ed.), Springer. 2008.
9. Luhandjula M.K. Fuzzy Optimization: Milestones and Perspectives// Fuzzy Sets and Systems, 2015, vol. 74, pp. 4–11.
10. Orlovsky S.A., On Programming with Fuzzy Constraint Sets//Kybernetes, 1977, vol. 1, pp. 197-201.
11. Orlovskij S.A. Problemy Prinyatiya Reshenij pri Nechetkoj Iskhodnoj Informacii. M. Nauka. 1981.
12. Noghin V.D. Mnogokriterial'nyj Vybor na Nechetkom Mnozhestve kak Zadacha Poiska Kompromissa// Iskusstvennyj intellekt i prinyatie reshenij, 2018, № 3, pp. 91-99.
13. Noghin V.D. Approximation of Convex Fuzzy Sets. In Proc. of Intern. Conf. Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, pp. 127-129. Интернет-ресурс: https://ieeexplore.ieee.org/document/7973994/
14. Noghin V.D. Pareto Set Reduction: an Axiomatic Аpproach. Springer Inc., 2018.
15. Noghin V.D. Pareto Set Reduction Based on Some Metrics// Computational Mathematics and Mathematical Physics, 2017, vol. 57(4), pp. 645-652.