ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V. B. Melekhin, M. V. Khachumov Planning complex flight missions for a group of intelligent unmanned aerial vehicles

Abstract.

A comparative analysis of parallel and pipeline methods of performing complex flight missions by groups of intelligent unmanned aerial vehicles has been carried out, which allows determining the most effective way of its implementation according to the criteria of minimum time and limited functionality of onboard computers. A model of knowledge representation is proposed irrespective of a specific subject area, which provides the possibility of planning purposeful behavior in a priori undescribed conditions of the problem environment. Procedures for processing knowledge and finding solutions by using semantic networks have been developed that allow planning purposeful behavior of intelligent unmanned aerial vehicles in the process of solving various subtasks of a complex flight task with polynomial complexity.

Keywords:

group, unmanned aerial vehicles, model of knowledge representation, frames of action, frames of relations, active semantic network, inference on semantic networks.

PP. 72-83

DOI 10.14357/20718594190207

References

1. Norvig P. 2015. Iskusstvennyj intellekt. Sovremennyj podhod. Rukovodstvo [Artificial intelligence. Modern approach. Guide]. M.: Dialektika / Vil'yams. 1408 p.
2. Andrejchuk A.A. 2018. Algoritm planirovaniya i soglasovaniya sovokupnosti traektorij dlya gruppy intellektual'nyh agentov [Algorithm of planning and coordination of a set of trajectories for a group of intelligent agents] // Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision-making.]. № 4. Pp.72-85.
3. Rondan U. Biard, Timoti U. MakLehjn. 2015. Malye bespilotnye letatel'nye apparaty. Teoriya i praktika [Small unmanned aerial vehicles. Theory and practice]. Moscow: Tekhnosfera. 312 p.
4. Abrosimov V.K. 2017. Kollektivy intellektual'nyh letatel'nyh apparatov [Groups of intelligent aircraft]. Moscow: Nauka. 304 p.
5. Kilani Y., Bsoul M., Alsarhan A., Al-Khasawneh A. 2013. A Survey of the Satisfiability-Problems Solving Algorithms. // Intern. J. Advanced Intelligence Paradigms. 3:233 –256.
6. Lyugger Dzh. F. 2005. Iskusstvennyj intellekt: strategii i metody resheniya slozhnyh problem [Artificial intelligence: strategies and methods for solving complex problems]. 4-e izd. M.: Vil'yams. 863 p.
7. Kelly A. 2013. Mobile Robotics: Mathematics, Models, and Methods. Cambridge: Cambridge University Press. 808 p.
8. Vagin V.N., Derevenko A.V. Kutepov V.P. 2017. Algoritmy parallel'nogo logicheskogo vyvoda i issledovanie ih effektivnosti na komp'yuternyh sistemah [Parallel algorithms of logical inference and the study of their effectiveness on computer systems] // Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decisionmaking.]. №1. Pp.3-9.
9. Kober J., Peters J. 2014. Learning Motor Skills: From Algorithms to Robot Experiments. Cham: Springer. 201 p.
10. Osipov G.S. 2014. Lekcii po iskusstvennomu intellektu [Lectures on artificial intelligence]. Moscow: Liberkom. 272 p.
11. Bershtejn L.S., Melekhin V.B. 1994. Planirovanie povedeniya intellektual'nogo robota [Intelligent robot behavior planning]. Moscow: Ehnergoatomizdat. 240 p.
12. Khachumov M.V. 2018. Planirovanie i modelirovanie traektorii dvizheniya letatel'nogo apparata v slozhnyh usloviyah [Planning and modeling of the trajectory of the aircraft in difficult conditions] // Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decisionmaking]. Pp. 3-11.
13. Melekhin V.B., Khachumov M.V. 2018. Planirovanie marshruta celenapravlennogo poleta avtonomnogo letatel'nogo apparata na nizkoj vysote v usloviyah neopredelennosti [Planning of the route of a purposeful flight of an autonomous aircraft at low altitude under uncertainty] // Aviakosmicheskoe priborostroenie [Aerospace Instrument- Making]. Pp. 18-27.