ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

G. I. Shepelev Comparing of Polyinterval Alternatives: Collective Risk Estimating

Abstract.

The procedures for calculating preference and risk indicators that were previously applied to mono interval objects are proposed within the collective risk estimating method in the case of pairwise comparison for polyinterval objects, generalized interval and fuzzy objects. The procedures are based on the defuzzification of interval estimates of preference and risk indicators related to mono intervals at alpha-levels in the case of fuzzy polyinterval objects and on the presentation of generalized interval estimates as a probabilistic mixture of the distributions forming such an estimate. Some differences and relationships in approach of generalized interval estimations and fuzzy approach for comparing alternatives are studied. It is established that generalized uniform distributions of chances in the approach of generalized interval estimates are obtained if we use the defuzzification methods for uniform distributions on alpha levels of fuzzy objects discussed in the paper. It is shown how the defuzzification procedures lead to one-numeric estimates for the interval characteristics of fuzzy objects, similar to the numerical characteristics of distribution functions of the probability theory, mathematical expectation, variance, mean semideviation. Depending on the defuzzification method, different chances distributions in the formalism of generalized interval estimates can be obtained from uniform distributions on alpha-levels of fuzzy objects. However, the whole variety of chance distribution arising in the last formalism is not exhausted by the distributions obtained in this way.

Keywords:

comparing of polyinterval alternatives, generalized interval estimations, fuzzy polyinterval alternatives, defuzzification methods, one-numeric estimates of interval characteristics of fuzzy objects, method of collective risk estimating, procedures of polyinterval alternatives comparing.

PP. 3-11.

DOI 10.14357/20718594190301

References

1. Orlovsky S. Problemy prinyatiya resheny pri nechetkoi iskhodnoi informarsii. 1981. [Decision making problems with fuzzy source information]. Moscow: Nauka. 208 p.
2. Chugunov N. Shepelev G., Sternin M. 2008. The generalized interval estimations in decision making under uncertainty // International Journal of Technology, Policy and Management. 8(3): 298–321.
3. Sternin M., Shepelev G. 2010. Generalized interval expert estimates in decision making // Doklady Mathematics. 81(3): 485–486.
4. Fishburn P.C. 1977. Mean-risk analysis with risk associated with below-target returns // American Economic Review. 67(1): 116–126.
5. Ogryczak W, Ruszczyński A. 1999. From stochastic dominance to mean-risk models: semideviations as risk measures // European journal of operational research. 116: 33–50.
6. Podinovsky V. 2015. Chislovye mery riska kak kriterii vybora pri veroyatnostnoi neopredelennosti [Numerical risk measures as selection criteria for probabilistic uncertainty] //Iskusstvenny intellekt i prinyatie resheny [Artificial intelligence and decision-making] 2: 60–74.
7. Shepelev G. 2019. Sravnenie poli intervalnykh alternative: metod “srednee – risk” [Comparing poly-interval alternatives: “mean-risk” method] //Iskusstvenny intellekt i prinyatie resheny [Artificial intelligence and decisionmaking] 1. P: 16–26.
8. Shepelev G. 2016. Decision-making in groups of interval alternatives // International journal «Information theories and applications». 23(4): 303–320.
9. Shepelev G., Zhiyanov V. 2018. Kompleksnyi metod sravneniya alternativ v usloviyakh riska [Comprehensive method for comparing interval alternatives under risk] //Vestnik TSEMI [Herald of CEMI]. 3 [Electronic resource]. URL: http://cemi.jes.su/s111111110000061-0-1 (circulation date:15.01.2019). DOI: 10.33276/S0000061-0-1.
10. Sternin M., Shepelev G. 2015. Otsenka riska v sovokupnosti intervalnykh alternativ [Risk estimating in interval alternatives set] // Iskusstvenny intellekt i prinyatie resheny [Artificial intelligence and decision-making] 3: 83–91.
11. Diligensky N., Dymova N., Sevastiyanov P. 2004. Nechetkoe modelirovanie i mnogokriterialnaya optimizatsiya proizvodstvennykh system v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya [Fuzzy modeling and multi-criteria optimization of production systems under uncertainty: technology, economy, ecology]. Moscow: Engineering-1 Publs. 397 p.
12. Shepelyov G., Sternin M. 2011. Methods for comparison of alternatives described by interval estimations// International Journal of Business Continuity and Risk Management. 2(1): 55-69.
13. Dubois D., Prade H. 1988. Theorie des possibilites. Paris: Masson. - 288 p.
14. Nedosekin A.O. 2002. Nechetko-mnozhestvennyi analis riska finansovykh investitsi [Fuzzy-set analysis of finance investments]. S-Ptsb: Sezam. – 181 p.
15. Sternin M., Shepelev G., Shepelev N. 2007. Svoistva obobshchennogo ravnomernogo raspredeleniya veroyatnostei [Properties of the generalized uniform probability distribution] // Trudy 2-oi Mezhdunarodnoi konferentsii “Sistemny analiz i informatsionnye tekhnologii” [2-nd International Conference "System Analysis and Information Technologies" (SAIT-2007)]. Moscow. 1: 239-242.
16. Shepelyov G., Sternin M. 2014. The adequacy of point criteria during the evaluation and comparison of interval alternatives problems //Scientific and technical information processing. 41(6): 78–88.
17. Shakhnov I.F. 2004. Ekspress-analis uporyadochennosti intervalnykh velichin [Express analysis of ordering interval values] // Avtomatika i telemekhanika [Automation and remote control] 10: 67–84.
18. Orlov A.I. 2004. Nechislovaya statistika [Non-numeric statistics]. Moscow: MZ-Press. – 513 p.
19. Poroskun V.I., Sternin G.I., Shepelev G.I. 1998. SPPR dlya stoimostnoi otsenki neftegasovykh objektov na rannei stadii ikh izuchennosti [DSS for evaluating oil and gas objects on early stages of study // [Scientific and technical information processing] 3: 27-38.