ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

A. A. Akhrem, A. P. Nosov, V. Z. Rakhmankulov, K. V. Yuzhanin Computational Performance of Hypercube Reduction Methods for Multidimensional Data of Analytical OLAP System

Abstract.

The paper investigates mathematical methods of decomposition (reduction) of large hypercubes of multidimensional data of analytical OLAP-systems into subcube components. The criterion for reducing the computational complexity of solving these problems by decompositional methods of exponential and polynomial-logarithmic degrees of complexity compared with traditional methods for analyzing large amounts of information accumulated in hypercubes of multidimensional OLAP data is proved. For reduction methods for analyzing OLAP cubes of a logarithmic degree of complexity, a criterion is established for increasing computational complexity in comparison with non-reduction methods. An exact upper bound for the change in the complexity of decomposition data analysis methods for varying the main parameters of the hypercube is obtained.

Keywords:

hypercube of multidimensional data, methods of decomposition of hypercubes, exponential and polynomial-logarithmic complexity of decomposition.

PP. 23-28.

DOI 10.14357/20718594190403

References

1. Pavlovskiy YU.N., Smirnova T.G. 1998. Problema dekompozitsii v matematicheskom modelirovanii [The problem of decomposition in mathematical modeling]. Moscow: FASIS. 272 p.
2. Yolkin V.I. 2003. Reduktsiya nelineynykh upravlyayemykh system [Reduction of nonlinear controlled systems]. Moscow: FASIS. 208 p.
3. Golubeva N.V. 2013. Matematicheskoye modelirovaniye sistem i protsessov [Mathematical modeling of systems and processes]. St. Petersburg: Publ. house “Lan'”. 192 p.
4. Barsegyan A.A., Kupriyanov M.S., Kholod I.I. et al. 2009. Analiz dannykh i protsessov [Analysis of data and processes]. St. Petersburg: BHV - Petersburg. 512 p.
5. Andreychikov A.V., Andreychikova O.N. 2004. Intellektual'nyye informatsionnyye sistemy [Intellectual information systems]. Moscow: Finance and Statistics. 424 p.
6. Makkonell Dzh. 2004. Osnovy sovremennykh algoritmov [Basics of modern algorithms]. Moscow: Technosphere. 368 p.
7. Doumpos M., Zopounidis C. 2002. Multicriteria Decision Aid Classification Methods. Dordrecht: Kluwer Academic Publishers, 345 p.
8. Petrovsky A.B., Lobanov V.N. 2014. Mnogokriterialnyii vybor v prostranstve priznakov bolchoii razmernosti: multemediinaya technologiya PAKS-M //Iskusstvennyii intellect I prinyatie reshenii. (3): P.92–104.
9. Agarwal S., Agrawal R., Deshpande P.M., et al. 1996. On the computation of multidimensional aggregates. In Proc. of the 22nd VLDB Conf. P.506-521.
10. Chubukova I.A. 2008. Data Mining. Moscow: Binom. Laboratory of Knowledge. 382 p.
11. Makarov I.M., Rakhmankulov V.Z., Akhrem A.A., Rovkin I.O. 2005. Issledovaniye svoystv giperkubovykh struktur v OLAP-sistemakh [Investigation of the properties of hypercube structures in OLAP-systems]. Informatsionnyye tekhnologii i vychislitel'nyye sistemy [Information technologies and computing systems]. 2:P.4-9.
12. Akhrem A.A., Rakhmankulov V.Z., Yuzhanin K.V. 2017. Vychislitel'naya slozhnost dekompozitsii OLAP-kubov mnogomernykh dannykh [Computational complexity of decomposition of OLAP-cubes of multidimensional data]. Sedmaya Mezhdunarodnaya konferentsiya “Sistemnyy analiz i informatsionnyye tekhnologii” [7th International Conference “System Analysis and Information Technologies” SAIT-2017]. Svetlogorsk. Russia.P.597-600.
13. Akhrem A.A., Rakhmankulov V.Z., Yuzhanin K.V. 2017. On complexity of reduction of multidimensional data models. Scientific and Technical Information Processing, Allerton Press Corporation, Springer. 6:P.406-411.
14. Akhrem A.A., Rakhmankulov V.Z., Yuzhanin K.V. 2018. Dekompozitsionnyye metody analiza mnogomernykh dannykh [Decomposition methods for the analysis of multidimensional data]. V kn: ”Sistemnyye issledovaniya. Metodologicheskiye problemy” [In the book: ”System studies. Methodological problems”]. Moscow: Poli Print Servis. 38:P.88-97.
15. Wittmer S., Lauer T., Datta A. 2011. Real-time computation of advanced rules in OLAP Databases. Advances in Databases and Information Systems, Lecture Notes in Computer Science. 6909:P.139-152.
16. Gurov S.I. 2013. Bulevy algebry, uporyadochennyye mnozhestva, reshotki [Boolean algebras, ordered sets, lattices]. Moscow: Book House “LIBROCOM”. 352 p.
17. Soboleva T.S., Chechkin A.V. 2006. Diskretnaya matematika [Discrete Math]. Moscow: Publishing Center “Academy”. 252 p.