ISSN 2071-8594

Российская академия наук

 

Н. А. Игнатьев, М.А. Станкевич, Н. В. Кисельникова , О. Г. Григорьев "Определение личностных черт у пользователей Вконтакте на основе анализа изображений"

Аннотация.

Психометрический анализ информации из интернета является одним из быстрорастущих трендов современных исследований. На основе интеллектуального анализа данных из социальных сетей выявляются психологические особенности пользователей социальных сетей и наличие у них признаков психологического неблагополучия. В настоящей работе решается задача выявления личностных черт – предикторов депрессии, у пользователей социальной сети Вконтакте на основе интеллектуального анализа публикуемых ими изображений. Описаны предлагаемые методы решения задачи и результаты экспериментальной проверки методов на данных из сети Вконтакте. Наши исследования показали, что учет наличия объектов на изображениях позволяет решать задачу с наилучшим уровнем качества.

Ключевые слова:

личностные черты, социальные сети, анализ изображений, машинное обучение.

Стр. 29-36.

DOI 10.14357/20718594190404

Полная версия статьи в формате pdf.

Литература

1. Widiger T. A., Costa Jr P. T. Personality and personality disorders //Journal of abnormal psychology. – 1994. – Т. 103. – №. 1. – С. 78.
2. Widiger T. A., Mullins-Sweatt S. N. Clinical utility of a dimensional model of personality disorder //Professional Psychology: Research and Practice. – 2010. – Т. 41. – № 6. – С. 488.
3. Stankevich M., Latyshev A., Kiselnikova N., Smirnov I. Predicting Personality Traits from Social Network Profiles // In: Kuznetsov S., Panov A. (eds) Artificial Intelligence. RCAI 2019. Communications in Computer and Information Science. – Springer, Cham – 2019. – vol. 1093. – рр. 177-188.
4. Schwartz H. A. et al. Personality, gender, and age in the language of social media: The open-vocabulary approach //PloS one. – 2013. – Т. 8. – №. 9. – С. E73791.
5. Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital records of human behavior //Proceedings of the National Academy of Sciences. – 2013. – Т. 110. – №. 15. – С. 5802-5805.
6. Ferwerda B., Tkalcic M., Schedl M. Personality Traits and Music Genres: What Do People Prefer to Listen To? //Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization. – ACM, 2017. – С. 285-288.
7. Shatte A. B. R., Hutchinson D. M., Teague S. J. Machine learning in mental health: a scoping review of methods and applications //Psychological medicine. – 2019. – Т. 49. – №. 9. – С. 1426-1448.
8. Kursuncu U. et al. Predictive Analysis on Twitter: Techniques and Applications //Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. – Springer, Cham, 2019. – С. 67-104.
9. Losada D. E., Crestani F., Parapar J. Overview of eRisk: early risk prediction on the internet //International Conference of the Cross-Language Evaluation Forum for European Languages. – Springer, Cham, 2018. – С. 343-361.
10. Yazdavar A. H. et al. Semi-supervised approach to monitoring clinical depressive symptoms in social media //Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. – ACM, 2017. – С. 1191-1198.
11. Wongkoblap A., Vadillo M. A., Curcin V. Researching mental health disorders in the era of social media: systematic review //Journal of medical Internet research. – 2017. – Т. 19. – №. 6. – С. e228.
12. Reece A. G., Danforth C. M. Instagram photos reveal predictive markers of depression //EPJ Data Science. – 2017. – Т. 6. – №. 1. – С. 15.
13. Nolan R. F., Dai Y., Stanley P. D. An investigation of the relationship between color choice and depression measured by the Beck Depression Inventory //Perceptual and motor skills. – 1995. – Т. 81. – №. 3_suppl. – С. 1195-1200.
14. Valdez P., Mehrabian A. Effects of color on emotions //Journal of experimental psychology: General. – 1994. – Т. 123. – №. 4. – С. 394.
15. Wieloch M. et al. Profiling user colour preferences with BFI-44 personality traits //International Conference on Business Information Systems. – Springer, Cham, 2018. – С. 63-76.
16. Ferwerda B., Tkalcic M. You are what you post: What the content of instagram pictures tells about users’ personality //The 23rd International on Intelligent User Interfaces, March 7-11, Tokyo, Japan. – 2018.
17. Segalin C. et al. The pictures we like are our image: continuous mapping of favorite pictures into self-assessed and attributed personality traits //IEEE Transactions on Affective Computing. – 2016. – Т. 8. – №. 2. – С. 268-285.
18. Segalin C., Cheng D. S., Cristani M. Social profiling through image understanding: Personality inference using convolutional neural networks //Computer Vision and Image Understanding. – 2017. – Т. 156. – С. 34-50.
19. Costa P. T., McCrae R. R. Normal personality assessment in clinical practice: The NEO Personality Inventory //Psychological assessment. – 1992. – Т. 4. – №. 1. – С. 5.
20. Lin T. Y. et al. Microsoft coco: Common objects in context //European conference on computer vision. – Springer, Cham, 2014. – С. 740-755.
21. Ren S. et al. Faster r-cnn: Towards real-time object detection with region proposal networks //Advances in neural information processing systems. – 2015. – С. 91-99.
22. He K. et al. Mask r-cnn //Proceedings of the IEEE international conference on computer vision. – 2017. – С. 2961-2969.
23. Bradski G., Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. – " O'Reilly Media, Inc.", 2008.
24. Tkalcic M., Tasic J. F. Colour spaces: perceptual, historical and applicational background. – IEEE, 2003. – Т. 1. – С. 304-308.
25. Pedregosa F. et al. Scikit-learn: Machine learning in Python //Journal of machine learning research. – 2011. – Т. 12. – №. Oct. – С. 2825-2830.