ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

E. M. Furems General Approach to Multiattribute Classification Problems Based on the Verbal Decision Analysis

Abstract.

There are a number of methods for ordinal, nominal-ordinal and nominal classification problems within the Verbal Decision Analysis (VDA) paradigm. The VDA-based general approach to all such types of classification problems is proposed. This approach is implemented in the STEPCLASS method, which retains all advantages of above mentioned methods and eliminates their drawbacks. It includes, without limitations, such techniques as (1) initial domain structuring and defining the type of a classification problem; (2) flexible strategy of a dialogue with an expert in order to reveal the complete and consistent set of his/her classification rules with possibility of the problem domain structure extension; and (3) decomposition of large-size classification problem with subsequent aggregation of classification rules over the set of all attributes.

Keywords:

verbal decision analysis, multiattribute classification, problem domain structuring, completeness and consistency of classification rules, classification problems with hierarchical structure and/or large-size classification problems.

PP. 47-60.

DOI 10.14357/20718594190406

References

1. von Neumann J. and Morgenstern O. Theory of games and economic behavior. – 2nd ed. – Princeton: Princeton University Press, 1947.
2. R. Keeney R.L., Raiffa H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. – N.Y.:J. Wiley, 1976.
3. Jacquet-Lagrueze E., Siskos Y. 1982. Assessing a set of additive utility functions for multicriteria decision making: The UTA method, EJOR 10:151-164.
4. Roy B., Bouyssou D., 1993.Aide multicritère à la décision: méthodes et cas. Paris: Economica.
5. Mousseau V., Slowinski R., Zielniewicz P. 2000. A useroriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Computers & Operations Research 27:757-777.
6. Figueira J., Mousseau V., Roy B. 2005. Electre methods. Multiple Criteria Decision Analysis: State of the Art Surveys, eds. Figueira J., Greco S., M. Ehrgott. Boston: Springer-Verlag, 133-162 p.
7. Greco S., Matarazzo B., Slowinski R. 2001. Rough sets theory for multicriteria decision analysis. EJOR. 129:1-47.
8. Greco S., Matarazzo B., Slowinski R. 2007. Dominance- Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory. T. Rough Sets 7(2007) 36-52.
9. Błaszczynski J., Greco S., Slowinski R. 2012. Inductive discovery of laws using monotonic rules. Eng. Appl. of AI 25(2): 284-294.
10. Błaszczynski J., Greco S., Słowinski R. 2007. Multicriteria classification – A new scheme for application of dominance-based decision rules, EJOR 181: 1030–1044
11. Zadeh L. 1965. Fuzzy sets. Information Control, 8: 338-353
12. Fernandez E., Navarro J. 2011. A new approach to multicriteria sorting based on fuzzy outranking relations: The THESEUS method. EJOR, 213(2): 405-413
13. Zopounidis C., Doumpos M. 2002. Multicriteria Classification and Sorting Methods: A Literature Review. EJOR. 138(2): 229-246.
14. Perny P. 1998. Multicriteria filtering methods based on concordance and non-concordance principles. Annals of Operations Research 80(1): 137-166.
15. Belacel N. 2000. Multicriteria assignment method PROAFTN: Methodology and medical applications, EJOR 125: 175-183.
16. Leger J., Martel J-M. 2002. A multicriteria assignment procedure for a nominal sorting problematic. EJOR 125: 175-183.
17. Belacel N., Boulassel M.R. 2004. Multicriteria Fuzzy Classification Procedure PROCFTN: Methodology and Medical Application, Fuzzy Sets and Systems, 141(2): 203-217.
18. Belacel N. 2004. The k-Closest Resemblance Approach for Multiple Criteria Classification problems, Modelling, Computation and Optimization Information and Management Sciences, eds. Thi Hoai, and Pham Dinh Tao. Hermes Sciences Publishing, London, 525-534.
19. Rigopoulos G., Askounis D., Metaxiotis K. 2010. NeXCLass: A Decision Support System for non-ordered Multicriteria Classification, IJITDM, 9(1): 53-79.
20. Rigopoulos G., Anagnostopoulos K. 2010. Fuzzy Multicriteria Assignment for Nominal Classification Methodology and Application in Evaluation of Greek Bank’s Electronic Payment Retailers, IJITDM, 9(3):1-18.
21. Yevseyeva I., Miettinen K., Salminen P., Lahdelma R. 2007. SMAA-Classification: A new method for nominal classification, Helsinki School of Economics, Working Paper, http://hsepubl.lib.hse../pdf/wp/w422.pdf.
22. Costa A. S., Corrente S., Greco S., Figueira J. R., Borbinha J. 2018. A robust hierarchical nominal classification method based on similarity and dissimilarity. arXiv preprint arXiv:1812.08596.
23. Chen Ye, Multiple Criteria Decision Analysis: Classification Problems and Solutions, 2006, http://etd.uwaterloo.ca/etd/y3chen2006.pdf.
24. Larichev O.I., Mechitov A.I., Moshkovich E.M., Furems E.M. 1989. Vyiavlenie ekspertnyh znanii (protsedury I realizatsiya) [Expert’s knowledge acquisition (procedures and implementation].– M.: Nauka, 128 P.
25. Larichev O.I., Moshkovich H.M., Furems E.M., Mechitov A.I., Morgoev V.K. 1991. Knowledge Acquisition for the Construction of the Full and Contradiction Free Knowledge Bases./– Groningen:Iec ProGAMMA, 230 p.
26. Furems Eugenia M. 2011. Domain Structuring For Knowledge-Based Multiattribute Classification (A Verbal Decision Analysis Approach). TOP 19(2): 402-420.
27. Puppe F. 1998. Knowledge Reuse among Diagnostic Problem-Solving Methods in the Shell-Kit D3. International Journal of Human-Computer Studies, 49:. 627-649.
28. Larichev, O.I. and Moshkovich, E.M. 1996. Kachestvennye metody prinyatiya reshenii (Qualitative Methods of Decision-Making), Moscow: Fizmatlit.
29. Ashikhmin Ilya, Furems Eugenia, Petrovsky Alexey, Sternin Michael. 2008. Intelligent DSS under Verbal Decision Analysis/ //Encyclopedia of Decision Making and Decision Support Technologies (2 Volumes). Hershey • New York: Information Science Reference. 514-527.
30. Larichev O.I., Moshkovich E.M.., Furems E.M. 1986. Decision Support System ‘Class’. New Direction in Research on Decision Making, eds. P. Lourenc and G. Svenson, North-Holland, Amsterdam, 305-315.
31. Larichev O.I., Moshkovich H.M. 1994. An Approach to Ordinal Classification Problems, International Transactions of Operational Research, Vol. 1, 3: 375-385.
32. Larichev O., Asanov A., Naryzhny Y. 2002. Effectiveness evaluation of expert classification methods, EJOR, 138(2): 260-273.
33. Larichev, O.I. and Bolotov, A.A. 1996. Systema DIFKLASS: postroenie polnyh I neprotivorechivyh baz ekspertnyh znanii v zadachah differentsialnoy diagnostiki [The DIFKLASS system: Construction of Complete and Non-contradictory expertise databases in problems of differential diagnostics], Nauchn. Tekhn. Inform., Ser. 2. vol.9: 9–15.
34. Furems E, Gnedenko L. 1996. Stepclass—a system for eliciting expert knowledge and conducting expert analyses for solving diagnostic problems. Autom Doc Math Linguist 30(5):23–28. Translations of selected articles from Nauchno-Tekhnicheskaya Informatsiya
35. Simon H.. 1960. The New Science of Management Decision. Harper and Row, New York.
36. Furems E.M, 2012. Mnogokriterialnaya poryadkovaya klassifikatsya na osnove metoda STEPCLASS (Multicriteria ordinal classification on the basis of the STEPCLASS method. Iskusstvennyi intellect i prinyatie reshenyi [Artificial Intelligence and Decision Making], 4: 95-100.
37. Furems E.M. 2015. STEPCLASS-Based Approach to Multicriteria Sorting.//Scientific and Technical Information Processing, vol. 42, No. 6: 87–96.
38. Furems E.M. 2010. Modifikatsya metoda erspertnoy nominalno- poryadkovoy klassifikatsii [Modification of the method for nominal-ordering classification], Iskusstvennyi intellect i prinyatie reshenyi [Artificial Intelligence and Decision Making], 4: 81-93.
39. Furems Eugenia M. 2013. Dominance-Based Extension Of STEPCLASS For Multiattribute Nominal Classification. IJITDM, vol. 12, No. 5: 905–925.
40. Furems E.M.. 2014. Primenenie metoda STEPCLASS k zadacham klassifikatsii c ierarhicheskoy strukturoy [Application of the STEPCLASS method for classification problem with hierarchical structure]. Iskusstvennyi intellect i prinyatie reshenyi [Artificial Intelligence and Decision Making], 4: 96-107.
41. Huang S. 2003. Dimensionality Reduction in Automatic Knowledge Acquisition: A Simple Greedy Search Approach. IEEE Transactions on Knowledge and Data Engineering, 15(6): 1364-1373.
42. Furems E., Sokolova L. 2011. Experts' knowledge acquisition for differential diagnostics of bronchial asthma in children in STEPCLASS environment. IJTPM, 11(1): 68-84.
43. Poroskun V.I., Farbirovich V.P., Furems E.M. 1996. Postroenie system diagnostiki geneticheskih types terrigennyh I karbonatnyh porod v srede STEPCLASS [Development of the system for diagnostics of genetic types of terrigenous and carbonate deposits in the STEPCLASS environment]. Nauchn. Tekhn. Inform., Ser. 2. vol. 9: 27-31.