ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

D. A. Devyatkin, A. T. Sofronova, I. V. Sochenkov Methods for Identifying Links Between Regulatory Documents


The article proposes a new method for relationship detection (explicit and implicit) between legal documents, as well as its experimental assessment on the corpus of legal texts on information technology regulation. The method considers deep linguistic features and allows estimating topic, syntax and semantic similarity of legal texts.


information extraction from legal documents, implicit relationship detection, relationalsituational analysis.

PP. 61-69.

DOI 10.14357/20718594190407


1. Comparative statistics of the work of the Moscow City Court for 2017, Available at:
2. Nezhivykh I.A., Legislation Automation: A New Profession in the SED, 2016, Available at: zakonotvorchestva.html#ixzz5F0p6A6h.
3. Kaziev V.M., Introduction to Legal Informatics, M.: NOI Intuit, 2016.
4. Suvorov R. E., Sochenkov I. V. Determination of the connectedness of scientific and technical documents based on the characteristics of thematic significance // Artificial Intelligence and Decision Making. – 2013. – № 1. – p. 33-40.
5. Zubarev D., Sochenkov I. Using Sentence Similarity Measure for Plagiarism Source Retrieval //CLEF (Working Notes). – 2014. – С. 1027-1034.
6. Lesmo L., Mazzei A., Radicioni D. Extracting Semantic Annotations from Legal Texts. – 2009.
7. Lesmo L. Use of semantic information in a syntactic dependency parser //International Workshop on Evaluation of Natural Language and Speech Tool for Italian. – Springer, Berlin, Heidelberg, 2012. – С. 13-20.
8. Semantic Model for Legal Resources: Annotation and Reasoning over Normative Provisions; Enrico Francesconi; 2016.
9. McGuinness D. L. et al. OWL web ontology language overview //W3C recommendation. – 2004. – Т. 10. – № 10. – С. 2004.
10. Combining NLP Approaches for Rule Extraction from Legal Documents; Mauro Dragoni, Serena Villata, Williams Rizzi, Guido Governatori; 2017.
11. Eunomos, a legal document and knowledge management system for the Web to provide relevant, reliable and up-todate information on the law; Guido Boella, Luigi Di Caro, Llio Humphreys, Livio Robaldo, Piercarlo RossiLeendert van der Torre; 2016.
12. TULSI: an NLP system for extracting legal modificatory provisions; Leonardo Lesmo, Alessandro Mazzei, Monica Palmirani, Daniele P. Radicioni; 2012.
13. Miller G. A. WordNet: a lexical database for English //Communications of the ACM. – 1995. – Т. 38. – № 11. – С. 39-41.
14. Manning C. et al. The Stanford CoreNLP natural language processing toolkit //Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations. – 2014. – С. 55-60.
15. McCune W. Release of prover9 //Mile High Conference on Quasigroups, Loops and Nonassociative Systems, Denver, Colorado. – 2005.
16. Martín Chozas P. Towards a Linked Open Data Cloud of language resources in the legal domain: дис. – ETSI_Informatica, 2018.
17. Kilgarriff A. et al. The Sketch Engine: ten years on //Lexicography. – 2014. – Т. 1. – № 1. – С. 7-36.
18. Boella G., Di Caro L., Robaldo L. Semantic relation extraction from legislative text using generalized syntactic dependencies and support vector machines //International Workshop on Rules and Rule Markup Languages for the Semantic Web. – Springer, Berlin, Heidelberg, 2013. – С. 218-225.
19. Boella G. et al. Linking legal open data: breaking the accessibility and language barrier in european legislation and case law //Proceedings of the 15th International Conference on Artificial Intelligence and Law. – ACM, 2015. – С. 171-175.
20. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun. ACM, 18:613–620, November 1975.
21. L. Lesmo. The Turin University Parser at Evalita 2009. Proceedings of EVALITA, 9, 2009.
22. John A. K. et al. Legalbot: a deep learning-based conversational agent in the legal domain //International Conference on Applications of Natural Language to Information Systems. – Springer, Cham, 2017. – С. 267-273.
23. Hochreiter S., Schmidhuber J. Long short-term memory //Neural computation. – 1997. – Т. 9. – № 8. – С. 1735-1780.
24. Van Opijnen M., Santos C. On the concept of relevance in legal information retrieval //Artificial Intelligence and Law. – 2017. – Т. 25. – № 1. – С. 65-87.
25. Livermore M. A. et al. Law Search as Prediction //Virginia Public Law and Legal Theory Research Paper. – 2018. – № 2018-61.
26. Gain B. et al. IITP in COLIEE@ ICAIL 2019: Legal Information Retrieval using BM25 and BERT. – 2019.
27. Devlin J. et al. Bert: Pre-training of deep bidirectional transformers for language understanding //arXiv preprint arXiv:1810.04805. – 2018.
28. Sun B. Information Structure Parsing for Chinese Legal Texts: A Discourse Analysis Perspective //International Journal of Technology and Human Interaction (IJTHI). – 2019. – Т. 15. – № 1. – С. 46-64.
29. Shaffer R., Mayhew S. Legal Linking: Citation Resolution and Suggestion in Constitutional Law //Proceedings of the Natural Legal Language Processing Workshop 2019. – 2019. – С. 39-44.
30. Osipov G. S., Smirnov I. V., Tikhomirov I. A. Relationalsituational method for text search and analysis and its applications //Scientific and Technical Information Processing. – 2010. – Т. 37. – № 6. – С. 432-437.
31. Daniil Larionov, Artem Shelmanov, Elena Chistova and Ivan Smirnov. Semantic Role Labeling with Pretrained Language Models for Known and Unknown Predicates // Proceedings of Recent Advances of Natural Language Processing, 2019, pp. 620-630.
32. Sochenkov I. et al. Exactus like: Plagiarism detection in scientific texts //European conference on information retrieval. – Springer, Cham, 2016. – С. 837-840.
33. Hoekstra R. et al. The LKIF Core Ontology of Basic Legal Concepts //LOAIT. – 2007. – Т. 321. – С. 43-63.
34. Voronina I. E., Pigalkova E. A. Creating a basic ontology for the Russian legal system based on the LKIF-Core ontology // Bulletin of the Voronezh State University. Series: System Analysis and Information Technology. – 2010. – № 1. – p. 154-159.