ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

O. V. Baskov, V. D. Noghin The Edgeworth-Pareto Principle in the Case of a 2-Type Fuzzy Preference Relation Summary

Abstract.

The Edgeworth-Pareto principle is extended to the class of multicriteria choice problems, in which the preference relation of the decision maker is described by a fuzzy binary relation of the type 2. The necessary condition for its fulfillment is the adoption of two assumptions ˗ Pareto axiom and axiom of exclusion of dominant variants. Brief information about fuzzy sets and relations of types 1 and 2 precedes the main results of the paper. In order to justify the Edgeworth-Pareto principle a fuzzy set of nondominated variants is introduced in the case of a 2-type fuzzy preference relation.

Keywords:

multicriteria choice, axiomatic approach, Edgeworth-Pareto principle, Pareto set reduction, fuzzy relation type 2.

PP. 51-62.

DOI 10.14357/20718594200204

References

1. Noghin V.D. A Logical Justification of the Edgeworth-Pareto Principle // Computational Mathematics and Mathematical Physics. ‒ 2002. ‒ Vol. 42, no. 7.‒ Pp. 915-920.
2. Ajzerman M.A., Aleskerov F.T. Vybor variantov. Osnovy teorii. ‒ M.: Nauka. ‒ 1990, ‒240p.
3. Noghin V.D. Obobshchennyj princip Edzhvorta-Pareto v terminah funkcij vybora // Metody podderzhki prinyatiya reshenij: Sb. trudov ISA RAN / Pod red. S.V. Emel'yanova, A. B. Petrovskogo. — M.: Editorial URSS. ‒ 2005, ‒Pp. 43-53.
4. Noghin V.D. Obobshchennyj princip Edzhvorta-Pareto i granicy ego primenimosti // Ekonomika i matematicheskie metody. ‒ 2005. ‒ Vol. 41. ‒ no. 3. ‒ Pp. 128-134.
5. Noghin V.D., Volkova N.А. Evolyuciya principa Edzhvorta-Pareto // Tavricheskij vestnik informatiki i matematiki. ‒ 2006. ‒ no. 1, Pp 23-33.
6. Noghin V.D. The Edgeworth-Pareto Principle and the Rela-tive Importance of Criteria in the Case of a Fuzzy Preference Relation // Computational Mathematics and Mathematical Physics. ‒ Vol. 43. ‒ no. 11. ‒ Pp 1604-1612.
7. Noghin V.D. The Edgeworth-Pareto principle in terms of a fuzzy choice function // Computational Mathematics and Mathematical Physics. ‒ 2006. ‒ Vol. 46. ‒ no. 4. ‒ pp.554-562.
8. Noghin V.D. An Axiomatization of the Generalized Edgeworth-Pareto Principle in Terms of Choice Func-
tions// Mathematical Social Sciences. ‒ 2006. ‒ Vol. 52. ‒ no 2. ‒ Pp. 210-216.
9. Noghin V.D. Generalized Edgeworth–Pareto Principle // Computational Mathematics and Mathematical Physics. ‒ 2015. ‒ Vol. 55. ‒ no. 12. ‒Pp. 1975–1980.
10. Zadeh L.A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning–1 \\ Information Sciences. ‒ 1975. ‒ Vol. 8. ‒ Pp. 199–249.
11. John R.I. Type 2 fuzzy sets: an appraisal of theory and appli-cations // Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems. ‒ 1998. ‒ Vol. 6. ‒ no 6. ‒Pp. 563–576.
12. Hisdal E. The IF THEN ELSE statement and interval-valued fuzzy sets of higher type // Internat. J. Man-Mach. Stud. ‒ 1981. ‒ Vol.15. ‒ Pp. 385–455.
13. Orlovskij S.A. Problemy prinyatiya reshenij pri nechetkoj iskhodnoj informacii. ‒ Nauka. ‒ 1971. ‒ 208P.
14. Klir G.J., Bo Yuan. Fuzzy sets and fuzzy logic. ‒ 1995. ‒ Prentice Hall PTR. ‒ 574P.
15. Mizumoto M., Tanaka K. Some Properties of Fuzzy Sets of Type 2 // Information and Control. ‒ 1976. ‒ no 31. ‒ Pp. 312-340.
16. Hu B.Q., Wang C.Y. On type-2 fuzzy relations and inter-val-valued type-2 fuzzy sets // Fuzzy Sets and Systems. ‒ 2014. ‒Vol. 236. ‒ Pp. 1–32.
17. Noghin V.D. Pareto set reduction. An axiomatic approach. ‒ Springer. ‒ 2018. ‒ 232P.