ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

B. M. Velichkovsky. G. S. Osipiv, Z. A. Nosovetz, B. B. Velichkovsky Personal Sense and Solution of Creative Tasks: Contemporary Neurocognitive Studies

Abstract.

In the review paper, we discuss cotemporary research of brain information processeing mechanisms in their relation to Self-reference, in first line, to semantics of personal sense. These studies testify to critical role of processes involed in the state of relative rest, which is basic state of consciosness. The very same processes in resting state networks participate in solution of creative tasks and, therefore, are of particular interest to works in the field of artificial intelligence and to developments of biologicall-inspired architecture in robotic systems. We consider in more details novel studies on neurosemantics. The studies show a non-modular carachter of natural language words representations and a possible influence of asymmetry in the effective (cause-and-effect) connectivity of both hyppocampi, i.e. the most ancient part of human cortex, or archecotex. In discussing mechanisms of creative tasks solution, we concenrate our-selves on interaction of resting state networks as the basis to explain incubation and insight phenomena. In particular, new exprimental data show that the insight type thinking is related to the suppresion of Central Executive Network and its function of focal attention, on the one side, and to the activation of Salience Network and to enhancement of personal sense motivating solution of the task, on the other side.

Keywords:

brain, neurosemantics, Default Mode Network, Salience Network, Central Executive Network, fMRI, EEG, incubation, insight.

DOI 10.14357/20718594200301

PP. 3-14.

References

1. Osipov G.S., Chudova N.V., Panov A.I., Kuznetsova Yu.M. Znakovaya kartina mira subyekta povedeniya [A symbolic picture of the world in the subject of behavior]. M.: Fizmatlit. 2018.
2. Leontiev A.N. Deyatel'nost'. Soznaniye. Lichnost' [Activity Consciousness. Personality]. M.: Politizdat. 1975.
3. Osipov G.S., Panov A.I., Otnoshenia i operatcii v znakovoj kartine mira subyekta povedeniya [Relations and operations within symbolic picture of the world in subject of behavior] // Artificial Intelligence and Decision Making. 2017. 3(4). P. 5-22.
4. Challis, B.H., Velichkovsky, B.M., Craik, F.I.M. Levels-of-processing effects on a variety of memory tasks: New findings and theoretical implications // Consciousness & Cognition. 1996, 5(1/2), P. 142-164.
5. Lake B. M., Ullman T. D., Tenenbaum J. B., Gershman S. J. Building machines that learn and think like people // Behavioural and Brain Sciences. 2017, V. 40, Art. 253.
6. Koehler, W. Intelligenzpruefungen an Menschenaffen. Berlin: Springer, 1921.
7. Kahneman D. Thinking, fast and slow. N.Y.: Farrar, Straus & Giroux, 2011.
8. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function // Proc. of the National Academy of Sciences of the USA. 2001, V. 98, P. 676–682.
9. Lowe M.J., Mock B.J., Sorenson J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations // NeuroImage. 1998, V. 7, P. 119–132.
10. Ushakov V.L. Sharaev M.G., Kartashov S.I., Zavyalova V.V., Verkhlyutov V.M., Velichkovsky B.M. // Dynamic causal modeling of hippocampal links within the human default mode network: Lateralization and computational stability of effective connections // Front.Hum. Neurosci, 2016. V. 10, Art. 528. doi: 10.3389/fnhum.2016.00528.
11. Harrison B.J., Pujol J., Lopez-Sola M., Hernandez-Ribas R., Deus J., Ortiz H., Soriano-Mas C., Yucel M., Pantelis C., Cardoner N. Consistency and functional specialization in the default mode brain network // Proc. of the National Academy of Sciences of the USA. 2008, V. 105, P. 9781–9786.
12. Raichle M.E. The brain’s default mode network // Ann. Rev. Neurosci. 2015, V. 38, P. 433–447.
13. Konishi M., Mclaren D.G., Engen H., Smallwood J. // Shaped by the past: The Default Mode Network supports cognition that is independent of immediate perceptual input // PLoS One. 2015, V. 10 (6), P. e0132209. doi: 10.1371/journal.pone.0132209.
14. Beaty R.E., Seli P., Schacter D.L. Network neuroscience of creative cognition: Mapping cognitive mechanisms and individual differences in the creative brain. // Curr. Opin. Behav. Sci. 2019, V. 27, P. 22–30. doi: 10.1016/j.cobeha.2018.08.013.
15. Moussa M.N., Steen M.R., Laurienti P.J., Hayasaka S. Consistency of network modules in resting-state FMRI connectome data // PloS One. 2012, V. 7 (8), P. e44428.
16. Kounios J., Fleck J.I., Green D.L., Payne L., Stevenson J.L., Bowden E.M., Jung-Beeman M. The origins of in-sight in restingstate brain activity // Neuropsychol. 2008, V. 46 (1). P. 281–291.
17. Friston K. J., Harrison L., Penny W. Dynamic causal modelling // Neuroimage. 2003, V. 19(4), P. 1273-302.
18. Friston K. J., Kahan J., Biswal B., Razi A. A DCM for resting state fMRI // Neuroimage. 2014, V. 94, P. 396-407. doi: 10.1016/j.neuroimage.2013.12.009.
19. Sharaev, M.G., Zavyalova V.V., Ushakov V.L., Kartashov, S. I., Velichkovsky, B. M. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data // Front. Hum. Neurosci. 2016, V. 10, P. 14. doi:10.3389/fnhum.2016.00014.
20. Debener S., Ullsperger M., Siegel M., Fiehler K., von Cramon D.Y., Engel A.K. Single-trial EEG/fMRI reveals the dynamics of cognitive function // Trends in Cognit. Sci. 2006, V. 10, P. 558–563.
21. Basar E. Oscillations in “brain-body-mind” – A holistic view including the autonomous system // Brain Res. 2008, V. 1235, P. 2–11.
22. Knyazev G. G. Motivation, emotion, and their inhibitory control mirrored in brain oscillations // Neuroscience Biobehav. Rev. 2007, V. 31, P. 377-395.
23. Knyazev G. G., Savostyanov A. N., Bocharov A. V., Brak I. V., Osipov E. A., Filimonova E. A., Saprigyn A. E., Aftanas L. I. Task-positive and task-negative networks in major depressive disorder: A combined fMRI and EEG study // Journal of Affective Disorders. 2018, V. 235, P. 211-219.
24. Knyazev G. G. EEG correlates of self-referential processing // Frontiers in Human Neuroscience. 2013, V. 7, art. 264. https://doi.org/10.3389/fnhum.2013.00264
25. Soch J., Deserno L., Assmann A., Barman A., Walter H., Richardson-Klavehn A., Schott B. H. Inhibition of information flow to the Default Mode Network during self-reference versus reference to others // Cerebral Cortex. June 2016, doi: 10.1093/cercor/bhw206
26. Velichkovsky B.M., Krotkova O.A., Kotov A.A., Orlov V.A., Verkhlyutov V.M., Ushakov V.L., Sharaev M.G. Consciousness in a multilevel architecture: Evidence from the right side of the brain // Consciousness & Cognition, 2018, V. 64, P. 227–239. doi: 10.1016/j.concog.2018.06.004.
27. Huth A.G., de Heer W.A., Griffiths T.L., Theunissen F.E., Gallant J. L. Natural speech reveals the semantic maps that tile human cerebral cortex // Nature. 2016, V. 532 (7600), P. 453–458.
28. Petrenko V.F. Eksperimental'naya psikhosemantika [Experimental psychosemantics]. M.: Publishing House of Moscow State University. 1982.
29. Fodor J. A. Modularity of mind. Cambridge, MA: MIT Press, 1985.
30. Velichkovsky B. M., Zabotkina V. I., Nosovets Z. A., Kotov A. A., Zaidelman L. Ya., Kartashov S. I., Korosteleva A. N., Malakhov D. G., Orlov V. A., Zinina A. A., Goldberg E., Ushakov V. L. Towards semantic brain mapping methodology based on a multidimensional markup of continuous Russian-language texts // STM. 2020, V. 12(2), 14-25.
31. Nastase S. A., Gazzola V., Hasson U., Keysers C. Measuring shared responses across subjects using intersubject correlation // Social Cognitive and Affective Neuroscience. 2019, V. 14(6), P. 667–685.
32. Knyazev G.G., Bocharov A.V., Savostyanov A.N., Velichkovsky B.M. Effekt inkubatsii i aktivnost' setey pokoya [The effect of incubation and activity of resting networks] // Journal of Higher Nervous Activity (in print).
33. Knyazev G.G., Bocharov A.V., Savostyanov A.N., Ushakov D.V., Velichkovsky B. M Elektroentsefalograficheskiye korrelyaty insayta [Electroencephalographic correlates of insight] // Questions of Psychology. 2020, V. 65 (1), P. 119-132.
34. Saggar M., Quintin E.M., Bott N.T., Kienitz E., Chien Y.H., Hong D.W., Liu N., Royalty A., Hawthorne G., Reiss A.L. // Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: A longitudinal fMRI Study / Cereb. Cortex. 2017, V. 27 (7), P. 3542–3552. doi: 10.1093/cercor/bhw171.
35. Marron T.R., Lerner Y., Berant E., Kinreich S., Shapira-Lichter I., Hendler T., Faust M. Chain free association, creativity, and the default mode network // Neuropsychol. 2018, V. 118, P. 40–58. doi: 10.1016/j.neuropsychologia.2018.03.018.
36. Kounios J., Beeman M. The cognitive neuroscience of in-sight // Ann. Rev. Psychol. 2014, V. 65, P. 71–93. doi: 10.1146/annurev-psych-010213-115154.
37. Ogawa T., Aihara T., Shimokawa T., Yamashita O. Large-scale brain network associated with creative insight: Combined voxel-based morphometry and resting-state functional connectivity analyses // Sci. Rep. 2018, V. 8, P. 6477. doi:10.1038/s41598-018-24981-0.
38. Heinonen J., Numminen J., Hlushchuk Y., Antell H., Taatila V., Suomala J. // Default mode and executive networks areas: Association with the serial order in divergent thinking / PLoS One. 2016, V. 11 (9), P. e0162234. doi:10.1371/journal.pone.0162234.
39. Khalil R., Godde B., Karim A.A. The link between creativity, cognition, and creative drives and underlying neural mechanisms // Front. Neural. Circuits. 2019, V. 13, P. 18. doi: 10.3389/fncir.2019.00018.
40. Beaty R.E, Christensen A.P., Benedek M., Silvia P.J., Schacter D.L. Creative constraints: Brain activity and network dynamics underlying semantic interference during idea production // NeuroImage. 2017, V. 148, P. 189–196. doi:10.1016/j.neuroimage.2017.01.012.
41. Beaty R.E., Kenett Y.N., Christensen A.P., Rosenberg M.D., Benedek M., Chen Q., Fink A., Qiu J., Kwapil T.R., Kane M.J., Silvia P.J. Robust prediction of individual creative ability from brain functional connectivity // Proc. of the National Academy of Sciences of the USA. 2018, V. 115 (5), P. 1087–1092. doi: 10.1073/pnas.1713532115.
42. Goldberg E. Creativity: The human brain in the age of innovation. N.Y.: Oxford Univ. Press, 2018.
43. Arnsten A.F., Wang M.J., Paspalas C.D. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses // Neuron. 2012, V. 76 (1), P. 223–239. doi: 10.1016/j.neuron.2012.08.038.
44. Velichkovsky B.M., Sharaev M.G., Ushakov V.L. Consciousness in a multilevel architecture: What causes the lateralization of effective connectivity under resting state? // Consciousness & Cognition. 2019, V. 73. doi: 10.1016/j.concog.2019.05.003.
45. McGilchrist I. Reciprocal organization of the cerebral hemispheres // Dialogues in Clin. Neurosci. 2010, V. 12 (4), P. 503–515.
46. Ito J., Yamane Y., Suzuki M., Maldonado P., Fujita I., Tamura H., Grun S. Switch from ambient to focal processing mode explains the dynamics of free viewing eye movements // Sci. Rep. 2017, V. 7 (1), P. 1082. doi: 10.1038/s41598-017-01076-w.
47. Velichkovsky, B.M. Heterarchy of cognition: The depths and the highs of a framework for memory research. // Memory. 2002, V. 10 (5/6), P. 405-419.
48. Mills M., Alwatban M., Hage B., Barney E., Truemper E.J., Bashford G.R., Dodd M.D. Cerebral hemodynamics during scene viewing: Hemispheric lateralization predicts temporal gaze behavior associated with distinct modes of visual processing // J. Exp. Psychol. Hum. Percept. Perform. 2017, V. 43 (7), P. 1291–1302. doi: 10.1037/xhp0000357.
49. Velichkovsky B.M., Korosteleva A.N., Pannasch S., Helmert J.R., Orlov V.A., Sharaev M.G., Velichkovsky B.B., Ushakov V L. Two visual systems and their eye movements: A fixation-based event-related experiment with ultrafast fMRI reconciles competing views // STM. 2019, V. 11(4), P. 7-18.
50. Wegbreit E., Suzuki S., Grabowecky M., Kounios J., Beeman M. Visual attention modulates insight versus analytic solving of verbal problems // J. Probl. Solving. 2012, V. 4 (2), P. 94–115.