ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

K. I. Pakhomova, A. L. Belova Study of the Social Network Communities by Means of Formal Concept Analysis

Abstract.

Nowadays, formal concept analysis (FCA) is an effective tool for data analysis. The mathematical foundation of FCA [2] is based on the applied theory of algebraic lattices. The advantages of this approach are not only the interpretation of data in the form of solutions of formula but also the visualization of the results represented by (Hasse) diagrams. The universality of the method allows its usage for the solution of various tasks. In this paper we describe an approach to constructing a lattice based on data obtained from posts communities of social networks. This approach will allow scientists to analyze the topics of publications of social network communities, in addition, to identify patterns between the sets of post communities and keywords attributed to them.

Keywords:

artificial intelligence, formal concept analysis, algebraic lattice, semantic analysis, word frequency.

PP. 14-20.

DOI 10.14357/20718594200402

References

1. Korshunov A., Beloborodov I., Buzun N. Analiz social’nyh setej: metody i prilozheniya//Trudy instituta sistemnogo programmirovaniya. 2014. С. 439–456.
2. Ganter B., Wille R. Formal Concept Analysis. Springer-Verlag Berlin Heidelberg. 1999.
3. Davey B.A., Priestley H.A., Introduction to Lattices and Order. Cambridge: Cambridge University Press. 2002.
4. Klimushkin M., Chetverikov D. Issledovanie amerikanskih politicheskih blogov na osnove formal’nogo analiza ponyatij // Novosibirsk. RIC prajskur’er, 2009.
5. Ignatov D. I. Formal Concept Analysis: From Theory to Practice // Analiz izobrazhenij, setej i tekstov // Moskva, Nacional’nyj otkrytyj universitet. INTUIT. 2009.
6. Kuznetsov S.O., Poelmans J. Knowledge representation and processing with formal concept analysis. Wiley Interdisciplinary Reviews, Data Mining Knowledge Discovery. 2013. Vol. 3. P. 200 – 215.
7. Ferré S., Huchard M., Kaytoue M., Kuznetsov S.O. Napoli A. Formal concept analysis: From knowledge discovery to knowledge processing, in P. Marquis, H. Parde, O. Papini, Eds., A Guided Tour of Artificial Intelligence Research, Springer. 2020. Vol. 2. P. 411–445.
8. Jones K. S. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation - MCB University: MCB University Press. 2004. Vol. 60. No. 5. P. 493–502.
9. Ignatov D.I., Kuznetsov S.O., Poelmans J., Zhukov L.E. Can triconcepts become triclusters? International Journal of General Systems. 2013. Vol. 42. P. 572–593.
10. Kuznetsov S.O. Machine Learning on the Basis of Formal Concept Analysis, Automation and Remote Control. 2001. Vol. 62, No. 10. P. 1543-1564.
11. Medina J., Pakhomova K., Ramirez-Poussa E. Recommendation Solution for a Locate-Based Social Network via Formal Concept Analysis. Trends in Mathematics and Computational Intelligence. Studies in Computational Intelligence. Springer, Cham. 2019. Vol.796. P. 131–138.
12. Medina J., Pakhomova K., Ramirez-Poussa E. Interpreting and analyzing a location-based social network by fuzzy formal contexts. IEEE Symposium Series on Computational Intelligence (SSCI). 2018. P. 1–6.
13. Cordero P. et al. Knowledge discovery in social networks by using a logic-based treatment of implications. Knowledge-Based Syst. Elsevier B.V. 2015. Vol. 87. P. 16–25.
14. Kuznetsov S.O. O nekotoryh voprosah analiza ponyatij // Nauchno-tekhnicheskaya informaciya (NTI). 1999. P. 57–61.
15. Ignatov D.I. Kuznetsov S.O., Poelmans J. Concept-Based Biclustering for Internet Advertisement. ICDM Workshops 2012. 2012. P.123–130.
16. Kuznetsov S.O. Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research. In: B. Ganter, G. Stumme, R. Wille, Eds., Formal Concept Analysis: Foundations and Applications, Lecture Notes in Artificial Intelligence (Springer), State-of-the Art Ser. 2005. Vol. 3626. P. 196–225.