ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

V. B. Melekhin, M. V. Khachumov Planning the Behavior of an Autonomous Flying Robot in a Space of Subtasks. Knowledge Representation Model

Abstract.

In the first part of the article, it is shown that autonomous flying robots formed by unmanned aerial vehicles, as a rule, have an automatic control system with limited computing re-sources not allowing to implement well-known labor-intensive logical models of knowledge representation and processing for planning purposeful behavior. In this regard, there is a need to develop such a model for the representation and processing of knowledge, which makes it possible with polynomial complexity to form plans for purposeful behavior in a priori underdetermined and various conditions of a problematic environment. To solve this problem, a model of knowledge repre-sentation was developed in the form of a set of typical basic, intermediate and terminal growth elements, which allow automatic planning of purposeful behavior in the space of sub-tasks in the form of a growing reduction network model for solving complex problems in underdetermined operating conditions. Procedures for automatic goal-setting have been developed that allow an autonomous flying robot to secure its activities in various conditions of an unstable a priori underdetermined problematic environment.

Keywords:

autonomous flying robot, purposeful behavior, problematic environment, knowledge representation model, reduction of tasks into subtasks, space of subtasks.

PP. 50-61.

DOI 10.14357/20718594210105

References

1. Kalyaev A.V., Chernuhin Yu. V.,. Kalyaev I. A. 1990. Odnorodnye upravlyayushchie struktury adaptivnyh robotov [Homogeneous control structures of adaptive ro-bots]. Moscow: Nauka. 147 p.
2. Afanas'ev V.N. 2018 Dinamicheskie sistemy upravleniya s nepolnoj informaciej. Algoritmicheskoe konstruirovanie [Dynamic control systems with incomplete information. Algorithmic design]. Mjscow: Editorial URSS. 215 p.
3. Stuart Russell, Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4 ed. Pearson. 1216 p.
4. Shumskij S.A. 2020. Mashinnyj intellekt. Ocherki po teorii mashinnogo obucheniya i iskusstvennogo intellekta [Machine intelligence. Essays on the theory of machine learning and artificial intelligence]. Moscow: RIOR. 339 p.
5. Ford Martin. 2018. Arhitektura intellekta. Vsya pravda ob iskusstvennom intellekte ot sozdatelej [Intelligence architecture. The whole truth about artificial intelligence from the creators]. Moscow: DMK Press. 311 p.
6. Dzhons M.T. 2016 Programmirovanie iskusstvennogo intellekta v prilozheniyah [Artificial Intelligence Programming in Applications]. Moscow: DMK Press. 311 p.
7. Kober J., Peters J. Learning Motor Skills: From Algorithms to Robot Experiments. Cham: Springer. 2014. 800 p.
8. Melekhin V.B. 2019. Model of Representation and Acquisition of New Knowledge by an Autonomous Intelligent Robot Based on the Logic of Conditionally Dependent Predicates // Journal of Computer and Systems Sciences International. 58(5). P. 747-765.
9. Kelly A. 2013. Mobile Robotics: Mathematics, Models, and Methods. Cambridge: Cambridge University Press. 808 p.
10. Kilani Y., Bsoul M., Alsarhan A., Al-Khasawneh A. A. Survey of the Satisfiability-Problems Solving Algorithms. // Intern. J. Advanced Intelligence Paradigms. 2013. №.3. V.5. P. 233 –256.
11. Varlamov O.O., Aladdin D.V. 2018. O primenenii mivarnyh setej dlya intellektual'nogo planirovaniya povedeniya robotov v prostranstve sostoyanij [On the use of mivar networks for intelligent planning of the behavior of robots in the state space]. Izvestiya Kabardino – Balkarskogo nauchnogo centra RAN [Izvestiya of the Kabardino - Balkarian Scientific Center of the Russian Academy of Sciences]. 6-2(86). P.75 – 82.
12. Karpov V.E., Karpova I.P., Kulinich A.A. Social'nye soobshchestva robotov [Social communities of robots]. Moscow: LENAND. 2019. 352 p.
13. Sajmon D. Algoritmy evolyucionnoj optimizacii [Algorithms of evolutionary optimization]. Moscow: DMK Press. 2020. 940 p.
14. Robert Kal'man. Nejronnye seti. Kratkij spravochnik [Neural networks. Quick reference]. Moscow: Vil'yams. 2017. 288 p.
15. Melekhin V.B., Hachumov M.V. 2020. Razbienie slozhnyh zadach na podzadachi v processe planirovaniya celenapravlennogo povedeniya integral'nogo bespilotnogo letatel'nogo apparata v prostranstve sostoyanij [Dividing complex tasks into subtasks in the process of planning the purposeful behavior of an integral unmanned aerial vehicle in the state space]. Morskie intellektual'nye tekhnologii [Marine Intellectual Technologies]. T. 1. 3 (49). P. 237 – 244.
16. Melekhin V.B., Hachumov M.V. 2020. Planirovanie povedeniya integral'nogo bespilotnogo letatel'nogo apparata na osnove razbieniya slozhnyh zadach na podzadachi v prostranstve sostoyanij [Planning the behavior of an integral unmanned aerial vehicle based on dividing complex tasks into subtasks in the state space]. Morskie intellektual'nye tekhnologii [Marine Intellectual Technologies]. T. 1. 3 (49). P. 245-252.
17. Melekhin V.B., Hachumov M.V. 2020. Planirovanie kollektivnoj deyatel'nosti avtonomnyh intellektual'nyh agentov v usloviyah neopredelennosti [Planning the collective activity of autonomous intelligent agents in conditions of uncertainty]. Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision making]. 4. P.101 – 113.
18. Melekhin V.B., Hachumov M.V. 2020. Nechetkie semanticheskie seti kak adaptivnaya model' predstavleniya znanij avtonomnyh intellektual'nyh system [Fuzzy semantic networks as an adaptive model for representing knowledge of autonomous intelligent systems]. Iskusstvennyj intellekt i prinyatie reshenij [Artificial intelligence and decision making]. 3. P. 61-72.
19. Melekhin V.B., Hachumov M.V. 2019. Instrumental'nye sredstva samoorganizacii kollektiva avtonomnyh bespilotnyh letatel'nyh apparatov v usloviyah neopredelennosti [Instrumental means of self-organization of the collective of autonomous unmanned aerial vehicles in conditions of uncertainty]. Aviakosmicheskoe priborostroenie [Aviation and Space Instrument Engineering]. 2. P.44-51.
20. Bershtejn L.S., Melekhin V.B. 2000. Planirovanie polifaznogo povedeniya samoorganizuyushchihsya intellektual'nyh sistem [Planning polyphasic behavior of self-organizing intelligent systems]. Izvestiya RAN. Teoriya i sistemy upravleniya [Journal of Computer and Systems Sciences International]. 5. P. 62-65.