ISSN 2071-8594

Russian academy of sciences


Gennady Osipov

I. L.Uglanova, E. S. Gelver, S. V. Tarasov, D. A. Gracheva, E. E. Vyrva Assessing Creativity Using Image Analysis with Neural Networks


The present study investigated the possibilities of assessing student creativity based on neural networks approaches for image analysis. The use of psychometric data analysis in the methodology of Latent Class Analysis (LCA) allowed us to obtain data labels to train the neural network without experts’ involvement. The high accuracy in network predictions for identifying image creativity suggested large-scale prospects for machine learning to assess complex educational and psychological characteristics.

Keywords: creativity, image analysis, neural networks, educational assessment, psychometrics, machine learning.

PP. 86-97.

DOI 10.14357/20718594210108


1. Forum W. E. New vision for education: Unlocking the potential of technology / W. E. Forum, British Columbia Teachers’ Federation Vancouver, BC, 2015.
2. Griffin P., Care E. Assessment and teaching of 21st century skills: Methods and approach / P. Griffin, E. Care, Springer, 2014.
3. Lucas B., Claxton G., Spencer E. Progression in student creativity in school: First steps towards new forms of formative assessments 2013.
4. Prıkaz Mınısterstva obrazovanııa ı naýkı RF ot 6 oktıabrıa 2009 g. N 373 «Ob ýtverjdenıı ı vvedenıı v deıstvıe federalnogo gosýdarstvennogo obrazovatelnogo standarta nachalnogo obego obrazovanııa».
5. Prıkaz Mınısterstva obrazovanııa ı naýkı RF ot 17 dekabrıa 2010 g. N 1897 «Ob ýtverjdenıı federalnogo gosýdarstvennogo obrazovatelnogo standarta osnovnogo obego obrazovanııa».
6. Chuang T.-Y., Liu E. Z.-F., Shiu W.-Y. Game-based creativity assessment system: the application of fuzzy theory // Multimedia Tools and Applications. 2015. № 21 (74). P. 9141–9155.
7. Sekeroglu B., Dimililer K., Tuncal K. Student performance prediction and classification using machine learning algorithms 2019. P. 7–11.
8. Shao, Z., Li, Y., Wang, X., Zhao, X., Guo, Y. Research on a new automatic generation algorithm of concept map based on text analysis and association rules mining // Journal of Ambient Intelligence and Humanized Compu-ting. 2020. № 2 (11). P. 539–551.
9. Liu, O. L., Rios, J. A., Heilman, M., Gerard, L., Linn, M. C. Validation of automated scoring of science assessments // Journal of Research in Science Teaching. 2016. № 2 (53). P. 215–233.
10. Nehm R. H., Ha M., Mayfield E. Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations // Journal of Science Education and Technology. 2012. № 1 (21). P. 183–196.
11. Leacock C., Chodorow M. C-rater: Automated scoring of short-answer questions // Computers and the Humanities. 2003. № 4 (37). P. 389–405.
12. Torrance E. P. Predictive validity of the torrance tests of creative thinking. // The Journal of creative behavior. 1972.
13. Van der Walt S. [et al.]. scikit-image: image processing in Python // PeerJ. 2014. (2). P. e453.
14. Pei B., Xing W., Lee H.-S. Using automatic image processing to analyze visual artifacts created by students in scientific argumentation // British Journal of Educational Technology. 2019. № 6 (50). P. 3391–3404.
15. Kil I. Development and Preliminary Validation of Image-enabled Process Metrics for Assessment of Open Surgery Suturing Skill 2019.
16. Frischknecht, A. C., Kasten, S. J., Hamstra, S. J., Perkins, N. C., Gillespie, R. B., Armstrong, T. J., & Minter, R. M. The objective assessment of experts’ and novices’ suturing skills using an image analysis program // Aca-demic Medicine. 2013. № 2 (88). P. 260–264.
17. Ward T. B. Structured Imagination: the Role of Category Structure in Exemplar Generation // Cognitive Psychology. 1994. № 1 (27). P. 1–40.
18. Jankowska D. M., Karwowski M. Measuring creative imagery abilities // Frontiers in psychology. 2015. (6). P. 1591.
19. Kim S. H., Vincent L. C., Goncalo J. A. Outside advantage: Can social rejection fuel creative thought? // Journal of Experimental Psychology: General. 2013. № 3 (142). P. 605.
20. Slavutskaya E., Abrukov V., Slavutskii L. Neural Network Systems Analysis of the Split-level Psychological Characteristics // Vestnik Chuvashskogo universiteta. 2016. №1. Available at: (accessed December 2, 2020).
21. Uglanova, I., Orel, E., Brun, I. Measuring creativity and critical thinking in primary school // Psikhologicheskii zhurnal. 2020. 41. №6. Available at: (accessed November 28, 2020).
22. Bogoyavlenskaya D.B. Psihologiya tvorcheskih sposobnostei. Moscow: Fedorov. 2009. 342 p.
23. Sternberg R. J. Handbook of creativity / R. J. Sternberg, Cambridge University Press, 1999.
24. Clark S. L., Muthén B. Relating latent class analysis results to variables not included in the analysis / S. L. Clark, B. Muthén, 2009.
25. Nylund-Gibson K., Choi A. Y. Ten frequently asked questions about latent class analysis. // Translational Issues in Psychological Science. 2018. № 4 (4). P. 440.
26. Muthén L. K., Muthén B. O. Mplus user’s guide / Los Angeles, CA: Muthén & Muthén, 2007.
27. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. Gradient-based learning applied to document recognition // Proceedings of the IEEE. 1998. № 11 (86). P. 2278–2324.
28. Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural networks // Communications of the ACM. 2017. № 6 (60). P. 84–90.
29. He, K., Zhang, X., Ren, S., & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification 2015. P. 1026–1034.
30. Deep Neural Networks Applications in Handwriting Recognition. Available at: (accessed November 16, 2020).
31. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S. Transfusion: Understanding transfer learning for medical imaging //Advances in neural information processing systems. 2019. P. 3347-3357.32. DENSENET. Available at: (accessed November 23, 2020).
33. Von Davier A. A. [et al.]. Computational psychometrics approach to holistic learning and assessment systems // Frontiers in Education. 2019. №4. P. 69.