ISSN 2071-8594

Russian academy of sciences

Editor-in-Chief

Gennady Osipov

О. В. Басков, В. Д. Ногин "Нечеткие множества второго порядка и их применение в принятии решений. Приложения"

Аннотация.

Статья продолжает обзор, связанный с нечеткими множествами и отношениями второго порядка. Анализируются различные приемы и методы упорядочения нечетких величин второго порядка, в том числе и на основе попарных сравнений. Разбираются существующие подходы к решению многокритериальных задач, множество возможных векторов которых состоит из нечетких величин второго порядка. Рассматривается задача многокритериального выбора с нечетким отношением предпочтения второго порядка, и приводятся аксиомы, принятие которых гарантирует выполнение принципа Эджворта-Парето.

Ключевые слова:

нечеткое множество второго порядка, нечеткое отношение второго порядка, ранжирование нечетких величин, многокритериальный выбор.

Стр. 21-34.

DOI 10.14357/20718594210203

Литература

1. Kahraman C., Onar S.C., Ostaysi B. Fuzzy multicriteria decision-making: A literature review // International J. of Computational Intelligence Systems. 2015. Vol. 8. No 4. P. 637-666.
2. Krejčí J. Pairwise comparison matrices and their fuzzy extension. Multi-criteria decision making with a new fuzzy approach. Springer International Publishing AG. 2018. 280 p.
3. Yatsalo B., Korobov A., Martínez L. Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment // Expert Systems with Applications. 2017. Vol. 84. No 7. P. 262-271.
4. Cheng C.‒H. A new approach for ranking fuzzy numbers by distance method \\ Fuzzy Sets and Systems. 1998. Vol. 95. P. 307-317.
5. Ramli N., Mohamad D. A Comparative analysis of centroid methods in ranking fuzzy numbers // European Journal of Scientific Research. 2009. Vol. 28. No 3. P.492-501.
6. Karnik N.N., Mendel J.M. Centroid of type-2 fuzzy set // Inform Sciences. 2001. Vol. 132. P. 195-220.
7. Wu D., Mendel J.M. A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets // Information Sciences. 2009. Vol. 179. P. 1169–1192.
8. Zhai D., Mendel J. M. Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm. 2011. In IEEE Transactions on Fuzzy Systems. Vol. 19. No. 3. P. 401-422.
9. Chen S.-M., Yang M.-W., Lee L.-W., Yang S.-W. Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets // Expert Systems with Applications. 2012. V. 39. P. 5295-5300.
10. Hu J., Zhang Y., Chen X., Liu Y. Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number // Knowledge-Based Systems. 2013. V. 43. P. 21-29.
11. Bakar A.S.A., Khalif K.M.N.K., Gegov A. Ranking of interval type-2 fuzzy numbers based on centroid point and spread. 2015. 7th International Joint Conference on Computational Intelligence (IJCCI). Lisbon. P. 131-140.
12. Javanmard M., Nehi H.M. Rankings and operations for interval type-2 fuzzy numbers: a review and some new methods // Journal of Applied Mathematics and Computing. 2019. Issue 1-2. P. 597-630.
13. Wu D., Mendel J.M. A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets // Information Sciences. 2009. Vol. 179. P. 1169-1192.
14. Saaty T.L. The analytic hierarchy process. 1990. RWS Publications. Pittsburgh. 287p.
15. Kahraman С. et al. Fuzzy analytic hierarchy process with interval type-2 fuzzy sets // Knowledge-Based Systems. 2014. Vol. 59. P. 48-57.
16. Celik E., Gumus A. T., Alegoz M. A trapezoidal type-2 fuzzy MCDM method to identify and evaluate critical success factors for humanitarian relief logistics management // Journal of Intelligent and Fuzzy Systems. 2014. Vol. 27. P. 2847-2855.
17. Abdullah L., Najib L. A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process // Expert Systems with Applications. 2014. Vol. 41. P. 3297-3305.
18. Öztayşi B. A Group decision making approach using interval type-2 fuzzy AHP for enterprise information systems project selection // Journal of Multiple-Valued Logic and Soft Computing. 2015. Vol. 24. P. 475-500.
19. Chen S.-M., Lee L.-W. Fuzzy multiple attributes group decision-making based on ranking values and the arithmetic operations of interval type-2 fuzzy sets. \\ Experts System with Applications. 2010. Vol. 37. P. 824-833.
20. Abdullah L., Adawiyah C.W.R., Kamal C.W. A decision making method based on interval type-2 fuzzy sets: An approach for ambulance location preference. // Applied Computing and Informatics. 2018. Vol. 14, Issue 1, P. 65-72.
21. Chiao K. Multiple criteria group decision making with triangular interval type-2 fuzzy sets. 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011). Taipei. 2011. P. 2575-2582.
22. Chiao K. Trapezoidal interval type-2 fuzzy set extension of Analytic Hierarchy Process. 2012 IEEE International Conference on Fuzzy Systems. Brisbane. 2012. P. 1-8.
23. Chiao K. The multi-criteria group decision making methodology using type 2 fuzzy linguistic judgments // Applied Soft Computing. 2016. Vol. 49. P. 189-211.
24. Tzeng G.-H, Huang J-J. Multiple Attribute Decision Making: Methods and Applications. 2011. Hapman and Hall/CRC. 349 р.
25. Hwang C.L.; Yoon K. Multiple attribute decision making: methods and applications. A state-of-the-art survey. 1981. Springer-Verlag. New York. 269p.
26. Corrente S., Greco S., Slowinski R. Multiple criteria hierarchy process with ELECTRE and PROMETHEE // Omega. 2013. Vol. 41. Issue 5. P. 820-846.
27. Chen C.-T. Extensions of the TOPSIS for group decision making under fuzzy environment // Fuzzy Sets and Systems. 2000. Vol. 114. P. 1-9.
28. Ayvaz B., Kusakçı A.O. A trapezoidal type-2 fuzzy multicriteria decision making method based on TOPSIS for supplier selection: An application in textile sector // Pamukkale University Journal of Engineering Sciences 2017. Vol.23. P. 71-80.
29. Dymova L., Sevastjanov P., Tikhonenko A. An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts // Knowledge-Based Systems. 2015. Vol. 83. P. 116-127.
30. Wang H., Yao J., Zhang X. A new multi-attribute decision making method based on interval normal type-2 fuzzy numbers. 2018. International Conference on Fuzzy Theory and Its Applications (iFUZZY). Daegu, Korea (South). P. 136-141.
31. Geldermann J., Spengler T., Rentz O. Fuzzy outranking for environmental assessment case study: iron and steel making industry // Fuzzy Sets and Systems. 2000. Vol. 115. P. 45-65.
32. Chen T.-Y. Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights // Applied Mathematical Modelling. 2012. Vol. 36. P. 3029-3052.
33. Chen T.-Y. An interval type-2 fuzzy PROMETHEE method using a likelihood-based outranking comparison approach // Information Fusion. 2015. Vol. 25. P. 105-120.
34. Celik E., Gumus A.T. An outranking approach based on interval type-2 fuzzy sets to evaluate preparedness and response ability of non-governmental humanitarian relief organizations. // Computers & Industrial Engineering. 2016. Vol. 101, P. 21-34.
35. Özdemir Y.S., Üsküdar A. Strategy selection by using interval type-2 fuzzy mcdm and an application // Journal of Engineering Research. 2020. Vol. 8. No 3. P. 173-189.
36. Özkan B. et al. A hybrid multicriteria decision making methodology based on type-2 fuzzy sets for selection among energy storage alternatives // International Journal of Computational Intelligence Systems. 2015. Vol. 8. Issue 5. P. 914-927.
37. Басков О.В., Ногин В.Д. Принцип Эджворта-Парето в случае нечеткого отношения предпочтения второго порядка // Искусственный интеллект и принятие решений. 2020. № 2. С. 51-62.
38. Басков О.В., Ногин В.Д. Нечеткие множества второго прядка и их применение в принятии решений. Общие понятия // Искусственный интеллект и принятие решений. 2021. № 1 С. 3-14.
39. Noghin V.D. Reduction of the Pareto set. An axiomatic approach. 2018. Springer Ser.: Studies in Systems, Decisions and Control. Vol. 126. P. I-232.
40. Celik E. et al. A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets // Knowledge-Based Systems. 2015. Vol. 85. P. 329-341.